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Manipulating torsional motions of soft dielectric tubes

Gal Shmuela)
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(Received 24 February 2015; accepted 22 April 2015; published online 4 May 2015)

Tubular dielectric elastomers function as actuators by application of a radial voltage difference.
This work demonstrates how the applied electric field can be exploited to manipulate their
torsional motion. The approach employed considers torsional elastic waves superposed on a finitely
deformed configuration, which depends on bias electromechanical loadings. The theory of
nonlinear electroelasticity is utilized to derive the corresponding governing equations. These are
analyzed analytically and numerically, as functions of the thickness of the tube, the mechanical
constraints, and most importantly the applied voltage. The analysis shows how dispersive waves
beyond a certain length are filtered across a frequency band, and are significantly accelerated above
it. This phenomenon observed to strongly depend on the applied voltage, in a non-linear manner.
VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4919668]

I. INTRODUCTION

Dielectric elastomers1–3 are capable of undergoing large
deformations4 and their electromechanical properties are
changed when subjected to electric stimuli. They consist of a
soft elastomer coated with flexible electrodes. When a volt-
age is applied to the electrodes, the dipoles of the deformable
dielectric reorient. The resultant polarization tends to
weaken the external electric field. To maintain the same volt-
age difference, additional charge accumulates on the electro-
des, leading to enhanced Coulomb forces between the free
charges. Consequently, the surfaces of the electrodes are
drawn closer, squeezing the elastomer in one direction,
expanding it in the transverse ones.5 Owing to this simple
working principle, their low cost, light weight, fast response,
and particularly their ability to sustain large strains,6,7 vari-
ous mechanisms using soft dielectrics were developed; hap-
tic feedbacks, mini-robots, pumps, and miniature grippers
are only a few examples.8,9

Tunable dynamic behavior of dielectric elastomers has
been extensively investigated recently.10–14 Heterogeneity
has a significant role in this regard, as its modification, in
turn, influences the manner waves disperse. It was recently
shown, for example, how electrostatic tuning of periodic het-
erogeneity modifies the frequency range of propagating
waves.15–17 This work exploits electrostatically induced het-
erogeneity in hollow dielectric elastomer cylinders5,18,19 to
manipulate torsional motions, thus complementing a previ-
ous work on longitudinal ones.20 First, the tube is quasi-
statically deformed by means of a radial electric field, where
two different mechanical conditions are considered.
Subsequently, torsional waves propagating on top of the re-
sultant configuration are analyzed. The significance of the
mechanical constraints in the response of soft dielectrics,
well-known for the static regime,21–24 is explored in this set-
ting. Related problems were treated in purely elastic annular
cylinders.25,26 However, the sequel will demonstrate how

mechanical waves propagate in a unique manner in electroe-
lastic hollow cylinders. More importantly, it will show how
these can be significantly manipulated by tuning the bias
electric field. This, in turn, promotes their use for applica-
tions such as active isolators, motors, and robot-arms, to
name just a few.

The following sections compose the paper. Section II
summarizes the required theoretical background in nonlinear
electroelasticity and superposed incremental fields.27–32

Section III revisits a previously reported solution20 for the
static deformation of an electroelastic tube when subjected
to a radial electric field, at different mechanical constraints.
Section IV begins with the derivation of the equations gov-
erning torsional waves superposed on the resultant deformed
tube. Subsequently, analytical observations are pointed out
for several limiting cases, and a numerical scheme for a solu-
tion to the general problem is detailed. Utilizing this scheme,
Sec. V numerically investigates the dependency of the char-
acteristics of the motion on the geometry of the tube, the me-
chanical constraints, and most importantly the bias electric
field. Finally, the primary results and conclusions are sum-
marized in Sec. VI.

II. FINITE AND INCREMENTAL ELECTROELASTICITY

Let X0 denote a stress-free reference configuration of an
electroelastic body, with a boundary @X0. The body deforms
to a configuration X due to electromechanical loadings. The
resultant position of a body particle x 2 X is the image of a
twice differentiable vector field v, acting on a material point
X 2 X0, that is, x ¼ vðX; tÞ. The deformation gradient F ¼
rXv is used to map geometrical quantities in the vicinity X,
where rX is the gradient operator in the reference configura-
tion. Specifically, infinitesimal line dX, area NdA and vol-
ume dV elements are mapped to their current counterparts
dx; nda, and dv according to FdX; nda ¼ JF$TNdA and
dv ¼ JdV, respectively. Herein, J % det F, and N and n are
unit vectors normal to dA and da, respectively. In the sequel,
the right C ¼ FTF and left b ¼ FFT Cauchy-Green strain
tensors will be also used.a)Electronic mail: meshmuel@tx.technion.ac.il
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The balance of linear momentum is neatly written in
terms of a total stress31 r as

r & r ¼ qv;tt; (1)

where mechanical body forces are neglected and q denotes
the mass density. The total stress, accounting for both me-
chanical and electrical forces, is symmetric, in virtue of
angular momentum balance.

In the body, a prescribed constitutive relation connects
the electric vector field, e, and electric displacement field, d.
In free space, the vacuum permittivity !0 is sufficient, such
that d? ¼ !0e?. Here and in what follows, a star superscript
denotes quantities in the surrounding space. For ideal dielec-
trics, i.e., when there is no free body charge, the quasi-
electrostatic approximation of Maxwell equations is

r & d ¼ 0; r' e ¼ 0: (2)

This approximation is valid when for the same frequency,
the length of the mechanical waves is shorter than the elec-
tromagnetic waves.

Across the boundary @X, the foregoing fields are to sat-
isfy the jump conditions

vrbn ¼ tm; vdb & n ¼ $we; veb' n ¼ 0; (3)

where v•b ¼ ð•Þ $ ð•Þ?, we is the surface charge density, and
tm is a prescribed mechanical traction. The latter, together
with the action of the Maxwell stress r? on n, constitutes the
total traction on a deformed area element, where

r? ¼ !0e? ( e? $ !0

2
e? & e?ð ÞI: (4)

The total first Piola-Kirchhoff stress, the Lagrangian electric
displacement, and electric fields

P ¼ JrF–T;D ¼ JF$1d;E ¼ FTe; (5)

respectively, satisfy the Lagrangian counterparts of Eqs.
(1)–(3)

rX & P ¼ qLv;tt; rX & D ¼ 0; rX ' E ¼ 0; (6)

vPbN ¼ tM; vDb & N ¼ $wE; vEb' N ¼ 0; (7)

where q ¼ qL=J; tMdA ¼ tmda, and wEdA ¼ weda. Outside
the body, Eq. (5) is evaluated with F? ¼ Fj@X0

.
The fields P and E are the derivatives of W, an aug-

mented energy density function31 of F and D, namely,

P ¼ @W
@F

; E ¼ @W
@D

: (8)

When the solid is incompressible, the stress can no longer be
determined as a function of the deformation alone, due to the
constraint J¼ 1. Hence, the first of Eq. (8) is replaced with

P ¼ @W
@F
$ pF–T; (9)

where the Lagrange multiplier p is calculated using the equa-
tions of motion together with the jump conditions.

Based on the theory of Dorfmann and Ogden,32 _vðX; tÞ
and _DðX; tÞ are independent small elastic and electric dis-
placement fields, superposed on a static deformed configura-
tion XðvÞ. Henceforth, overset dot denotes incremental
quantities. The push-forwards of _P; _D, and _E are

R ¼ 1

J
_PFT ; !d ¼ 1

J
F _D; !e ¼ F$T _E; (10)

respectively, and satisfy

r & R ¼ q _x;tt; r & !d ¼ 0; r' !e ¼ 0; (11)

where _xðx; tÞ % _vðX; tÞ. Incompressibility implies

r & _x % trh ¼ 0; (12)

where h % r _x is the displacement gradient. Upon lineariza-
tion of the constitutive relations in the increments, the fol-
lowing equations are obtained:

R ¼ Chþ phT $ _pIþB!d; (13)

!e ¼ BThþA!d; (14)

where ðBThÞk ¼ Bijkhij. In components form, the instantane-
ous tensorsA;B, and C are

Aij ¼ JF$1
ai

@2W
@Da@Db

F$1
bj ;

Bijk ¼ Fja
@2W

@Fia@Db
F$1

bk ;

Cijkl ¼
1

J
Fja

@2W
@Fia@Fkb

Flb:

(15)

III. FINITE DEFORMATIONS OF A SOFT DIELECTRIC
TUBE IN A RADIAL ELECTRIC FIELD

The finite deformation of a deformable dielectric tube
immersed in a radial electric field was first calculated by
Singh and Pipkin,33 revisited later by Zhu et al.,18 and in
the framework of small strains by Carpi and De Rossi.34

Shmuel and deBotton20 specialized the result of Singh and
Pipkin33 to a particular constitutive law, while accounting
for different boundary conditions. In favor of rendering a
self-contained report, this section summarizes the solution
provided in Sec. III therein.

Consider an incompressible infinite electroelastic tube,
coated with compliant electrodes on its inner and outer surfa-
ces at the radii RA and RB, respectively (see Fig. 1). When
subjected to voltage, a charge per unit length qA accumulates
on the interior electrode. The corresponding electric dis-
placement field in cylindrical coordinate system is

d ¼ dr r̂ ¼
qA

2pr
r̂; (16)

a particle whose initial coordinate is ðR;H; ZÞ, moves to
ðr; h; zÞ, in accordance with

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AR2 þ B

p
; h ¼ H; z ¼ Z=A; (17)
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where A and B are constants to be determined. The gradient
of the deformation (17) in the above coordinate system is di-
agonal, with the components

kz%FzZ¼
1

A
; kr%FrR¼

ARffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AR2þB
p ; kh%FhH¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AR2þB
p

R
:

(18)

The constitutive behavior of the tube is assumed to be gov-
erned by

WDH F;Dð Þ ¼
l
2

trC$ 3ð Þ þ 1

2!0!r
D & CD; (19)

where l and !r are the shear modulus and relative dielectric
constant, respectively. The associated total stress is

r ¼ lbþ 1

!0!r
d( d$ pI: (20)

When substituted into the equilibrium equations, one finds
that

p rð Þ¼ABl $1

2
r2þ 1

B
lnr$ 1

2B
ln r2$Bð Þþ q̂A

4

RA

r

" #2
 !

þP;

(21)

where q̂A ¼ qA

2p RA
ffiffiffiffiffiffiffiffi
l!0!r
p . The constants P; A and B are deter-

mined using the boundary conditions. There are no prescribed
mechanical tractions on the circumferential surfaces, i.e.,

rrrjrA
¼ 0; rrrjrB

¼ 0; (22)

where rA % rðRAÞ and rB % rðRBÞ. At this point, two differ-
ent loading paths are considered, for which the remaining
condition differs.

Axially free tube. The tube is free to expand in the axial
direction, such that the axial force is zero, namely,

ð2p

0

ðrB

rA

rzzrdrdh ¼ 0: (23)

Pre-stretched tube. First, the tube is pre-stretched
mechanically in the axial direction, and then clamped at a
fixed axial stretch ratio ~kz. In this manner, A ¼ 1=~kz is a pre-
scribed quantity. Then, the electric load is applied.

The considered constitutive law for the tube admits the
following relation between d and e:

d ¼ !e: (24)

By its integration, a connection between the voltage and the
charge is established, which reads

DV ¼ $
ðrB

rA

erdr ¼ q̂ARA

ffiffiffiffiffiffiffiffi
l
!0!r

r
ln

rB

rA
: (25)

In terms of A; B, and the initial geometry, the dimensionless
voltage DV̂ % DV

H

ffiffiffiffiffiffi
!0!r
l

q
is

DV̂ ¼ q̂A
RA

H
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AR2

B þ B
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AR2

A þ B
p ; (26)

where H ¼ RB $ RA. Beyond a critical amount of voltage,
which depends on the geometry of the tube and the axial
constraints, the mechanical response of the material cannot
balance the pressure induced by the electric field. The tube
thus collapses, and the aforementioned mapping no longer
provides a solution. The critical loading and its dependency
on the aforementioned parameters will turn to have a signifi-
cant role in the forthcoming dynamic analysis.

For brevity, the components of the instantaneous consti-
tutive tensors are given in the Appendix.

IV. TORSIONAL MOTIONS SUPERPOSED
ON A FINITELY DEFORMED DE TUBE

In what follows, the axial propagation of torsional waves
on top of the resultant configuration is formulated and deter-
mined. Thus, the incremental displacement field has only
one component in the tangential direction, i.e., _x ¼ vĥ.
Owing to axial symmetry, the governing fields are independ-
ent of h. Hence, the non-zero components of displacement
gradient are

hhz ¼ v;z; hhr ¼ v;r; hrh ¼ $v=r: (27)

The incremental Faraday law motivates a formulation of !e as
(minus) the gradient of a potential uðr; z; tÞ, such that
!e ¼ $ru. Utilizing the linearized constitutive law (14), the
components of !d read

!dz ¼ $!u;z; !dr ¼ $!u;r; !dh ¼ $drðv;r $ v=rÞ: (28)

The incremental Gauss equation

!dz;z þ !dr=r þ !dr;r ¼ 0; (29)

is then solved for u by separation of variables, with the
solution

u ¼ ½N1I0ðkrÞ þ N2K0ðkrÞ+e$iðxt$kzÞ; (30)

where I0 and K0 are the zero order modified Bessel functions
of the first and second kind, respectively, and N1 and N2 are
constants. Herein, the propagation is assumed to be in the
positive z-direction, where x is the angular frequency and k
is the wavenumber.

In contrast to the equations for superposed longitudinal
waves,20 the equation for v decouples from those for _p and

FIG. 1. The polar plane section of the dielectric at (a) the reference configu-
ration, and at (b) the deformed configuration, induced by a voltage DV.
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u, as well as the jump conditions. The remaining equations
along r and z relate _p; u, and their derivatives. These, to-
gether with the corresponding jump conditions

Rrrjr¼rA
¼ 0; Rrrjr¼rB

¼ 0;
Rzrjr¼rA

¼ 0; Rzrjr¼rB
¼ 0;

(31)

show that the incremental pressure and the electric field van-
ish. The incremental equation of motion along h

Rhr;r þ Rhz;z þ
1

r
Rhr þ Rrhð Þ ¼ qv;tt; (32)

governs v, where

Rhr ¼ lk2
r v;r $ p$ 1

!
d2

r

" #
v=r; (33)

Rrh ¼ p$ 1

!
d2

r

" #
v;r $ lk2

h $
1

!
d2

r

" #
v=r; (34)

Rhz ¼ lk2
z v;z: (35)

I postulate a solution for the displacement field in the form

v ¼ gðrÞe$iðxt$kzÞ: (36)

Upon substitution of Eq. (36) into (32), a linear ordinary dif-
ferential equation of order two with variable coefficients is
obtained for gðrÞ, namely,

k2
r þ 2 q̂A

RA

r

" #2
" #

g00 þ 1

r
A 1þ B

r2

" #
$ 2 q̂A

RA

r

" #2
" #

g0

þ x2

c2
B

$ k2

A2
$ A

r2
1þ B

r2

" #
þ 2

r2
q̂A

RA

r

" #2
" #

g ¼ 0;

(37)

where k2
r ¼ A 1$ B

r2

% &
, and cB ¼

ffiffiffiffiffiffiffiffi
l=q

p
is the bulk shear

wave velocity in an unstretched isotropic elastic dielectric.
In this form it is evident how inhomogeneity evolves by
application an electric load directly via q̂A, and through
the constant B, which increases monotonically with q̂A.
Equation (37) together with the jump conditions

Rhrjr¼rA
¼ 0; Rhrjr¼rB

¼ 0; (38)

determine the propagation modes and the dispersion rela-
tion, which relates the frequencies, lengths, and velocities of
the waves.

At this point, I make four observations. First, the func-
tional form of Eq. (37) is essentially different from Eq.
(3.3) of Shearer et al.26 who analyzed torsional motion
superposed on a finitely deformed hyperelastic tube due to
pressure differences. This implies that the effect of the elec-
tric field is more than inducing hydrostatic loading and
modifying material properties; it intrinsically alters the
propagation modes, in a way which cannot be obtained
mechanically.

Second, interestingly, the non-dispersive fundamental
mode gðrÞ ¼ r always satisfies the boundary-value problem,
as explained next. Upon substitution of gðrÞ ¼ r into

Eq. (37), the equation is rendered as a sum of the vanishing

finite equilibrium equation along r, and x2

c2
B
$ k2

A2

' (
g, provid-

ing c ¼ kzcB. The jump conditions are satisfied too, since
with gðrÞ ¼ r these become equal to rrr, which, in view of
the finite static problem, vanishes across the circumferences.

Third, examining Eq. (37) when k approaches infinity,
reveals that in the limit of short waves, all higher modes
velocities converge to the fundamental one.

Finally, when the cause of the deformation is only me-
chanical, that is when A 6¼ 0; q̂A ¼ 0 and consequently
B¼ 0, the solution of Eq. (37) is

gðrÞ ¼ C1J1ðA2=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2x2=cB $ k2

p
rÞ

þ C2Y1ðA2=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2x2=cB $ k2

p
rÞ; (39)

where J1 and Y1 are the first order Bessel function of the first
and second kind, respectively, and C1 and C2 are integration
constants. In the limit of small deformations, i.e., when
A¼ 1, Eq. (39), reduces to the classic solution of linear elas-
ticity,35 as it should.

In general, however, Eq. (37) cannot be solved analyti-
cally. To this end, I extend a numerical procedure, originally
used for bifurcation problems,36,37 as follows. First, in terms
of the vector

y ¼ g
g0

) *
; (40)

I represent Eq. (37) as two linear ordinary differential equa-
tions of order one, such that

y0iðrÞ ¼ AijðrÞyjðrÞ; i ¼ 1; 2; (41)

with AijðrÞ being the coefficient of yj in the i-th equation. For
each value of k, Eq. (41) is then solved numerically for all
values of x, subjected to the initial-like conditions

yiðrAÞ ¼ dim; i ¼ 1; 2; (42)

for the two cases m¼ 1 and m¼ 2. A linear combination of
the obtained solutions, say,

P2
m¼1 gmyðmÞ, is substituted into

the jump conditions (38), replacing g and its derivatives.
Pairs of fk;xg for which this substitution yields a vanishing
determinant of the coefficients of gm, i.e., satisfy the jump
conditions, constitute the dispersion curves. The scheme was
realized using Wolfram Mathematica 10.

V. NUMERICAL INVESTIGATION OF THE DISPERSION
CURVES

The influence of the tube geometry and the electrome-
chanical loadings on the superposed motion is explored
next. To this end, the dispersion curves are evaluated for
different pre-strains and voltages. The role of the wall-
thickness is examined by considering two initial thicknesses
of H¼ 0.1 mm and 4 mm. For both cases, RA¼ 1 mm is set.
This corresponds to initial ratios of thickness to mean-radius
of H
ðRAþRBÞ=2 ¼ 0:095 and 1.33, respectively. In the sequel,

these are referred to as the thin and thick tubes, respectively.
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The second, third, and fourth modes are displayed, out of an
infinite number of subsequent modes, in addition to the fun-
damental mode. For brevity, higher modes are omitted, as
they reproduce similar trends.

Figs. 2(a) and 2(b) display the normalized velocities
ĉ ¼ c=cB as functions of the normalized wavenumber
k̂ ¼ kH, for thin and thick tubes free of mechanical traction,
respectively. Here and henceforth, the continuous, dotted-
dashed (red), and dotted (blue) curves correspond to
DV̂ ¼ 0; 1

2, and 2
3, respectively. We observe how the numeri-

cal scheme reproduces the analytical result ĉ ¼ kz for the
fundamental mode. The axial strain has a stiffening effect on
the instantaneous axial modulus. Therefore, the velocities of
this mode rise monotonically with the electric potential, as it
increases the axial strain. Higher modes undergo steeper rise.
This rise depends non-linearly on DV̂ . Examine, for exam-
ple, the velocity of the second mode of the thin tube at
k̂ ¼ 2; DV̂ ¼ 2=3: it is about three times faster than when
DV̂ ¼ 0. Further, it is approximately 1.5 times the counter-
part velocity in an elastic tube, whose geometry is identical
to the deformed geometry of the electroelastic body. This
demonstrates that the enhancement is not only due to the
thinning and stiffening of the tube but also by virtue of an in-
herent change of the governing equation.

Comparison between Figs. 2(a) and 2(b) shows how the
increase in the velocity is more pronounced at the thin tube.
Intuitively, it agrees with the general understanding that the
electrical driving force becomes more significant as the dis-
tance between the electrodes is shorter. This is a direct con-
sequence of Coulomb law, stating that the electric force is
inversely proportional to the (square of the) distance between
charges. Mathematically, it corresponds to Eq. (26), which
implies that for a prescribed DV̂ , the charge q̂A is

proportional to 1=lnð1þ h=rAÞ, where h ¼ rB $ rA is the cur-
rent distance between the electrodes. Therefore, reduction of
thickness increases the charge in a non-linear manner. On
top of this non-linear relation, the current thickness is itself a
non-linear function of the applied voltage. The accumulation
of charge, in turn, modifies Rhr, which enters the jump condi-
tions and the governing equation.

Figs. 2(c) and 2(d) display normalized frequencies
x̂ ¼ xH=cB, as functions of the normalized wavenumber k̂,
for thin and thick tubes free of mechanical traction, respec-
tively. It is observed how at infinite wavelength, namely,
k̂ ¼ 0, only the fundamental branches start at the origin. All
higher branches initiate at some non-zero cutoff frequencies
x̂c > 0. The electric actuation shifts x̂c towards higher fre-
quencies. For example, when DV̂ ¼ 2=3, the cutoff fre-
quency associated with the second mode of the thin tube is
about 4 times its initial value when DV̂ ¼ 0, as it changes
from ,3 to ,11:5. A filtering functionality is thus identified
with the electric excitation, bearing in mind that only the
fundamental mode is propagating at frequencies below x̂c.
Hence, by subjecting the tube to a bias electric field, we
widen a gap at which all non-fundamental modes are filtered.
This trend is more pronounced at the thin tube, for which
such gaps rendered wider than at the thick tube.

Fig. 3 shows the normalized velocities ĉ as functions of
the normalized wavenumber k̂ for ((a) and (c)) a thin and
((b) and (d)) a thick tube, when axially constrained at ((a)
and (b)) ~kz ¼ 1, and ((c) and (d)) ~kz ¼ 2. Note that when
~kz ¼ 1, greater values of DV̂ can be applied before the tube
collapses, in comparison to the unconstrained setting. Curves
associated with DV̂ ¼ 1 are chosen to be shown instead of
DV̂ ¼ 2=3, and are denoted by the continuous curves with
diamond marks (purple). Conversely, tensile axial strain

FIG. 2. Axially free tube. Normalized
((a) and (b)) velocities ĉ and ((c) and
(d)) frequencies x̂ as functions of the
normalized wavenumber k̂ for ((a) and
(c)) a thin and ((b) and (d)) a thick
tube. The continuous, dotted-dashed
(red), and dotted (blue) curves corre-
spond to the normalized voltages
DV̂ ¼ 0; 1

2 ; and 2
3, respectively.
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limits the amount of voltage applied. In particular, at ~kz ¼ 2,
there is no static solution to a loading of DV̂ ¼ 2=3.
Accordingly, there are no corresponding curves. In this case,
the figures are supplemented with the dispersion curves at
DV̂ ¼ 1=3, and are denoted by continuous curves with bullet
marks (green).

The main observation is the huge velocity enhancement
by applying voltage, if the axial strain is fixed. By way of
example, examine the velocity of the second mode of the
thin tube at ~kz ¼ 1; k̂ ¼ 2. Remarkably, when DV̂ ¼ 1, it is
approximately 40 times the velocity when DV̂ ¼ 0. Again,
the cause is not only the resultant strains or geometry; the
velocity is about 8 times its counterpart in an elastic tube
having the same geometry, and about 15 times its counter-
part in an elastic tube with the same geometry and strains.

Similar ratios of enhancement are obtained for the ve-
locity of the second mode of the thin tube at ~kz ¼ 2; k̂ ¼ 2;
when DV̂ ¼ 1=2. In this sense, pre-stretching enhances the
performance of the tube, meaning that the same result is
achieved using less voltage. This is consistent with previous
reports on the improvement of dielectric elastomers perform-
ance by pre-stretch.7,38

These ratios moderate at the thick tube as examination
of Figs. 3(b) and 3(d) demonstrate. The velocity of the sec-
ond mode at ~kz ¼ 1; k̂ ¼ 2; DV̂ ¼ 1, as an example, is about
3 times the velocity when DV̂ ¼ 0. This moderation at the
thick tube in agreement with a similar observation made
when axially free tubes were analyzed. It also agrees with
the influence of pre-stretch: all point that reduction in thick-
ness promotes velocity enhancement by voltage.

Figs. 4(a) and 4(b) display the normalized frequencies x̂
as functions of the normalized wavenumber k̂ for (a) a thin
and (b) a thick tube, axially constrained at ~kz ¼ 1. The same
trends that were observed for unconstrained tubes are

identified here. The difference is the significant jump in the
frequencies of the modes which undergo drastic velocity
rise. For instance, the cutoff frequency of second mode of
the thin tube rises from ,3:2 when DV̂ ¼ 0, to ,163 when
DV̂ ¼ 1. In turn, it implies that bands at which non-
fundamental modes attenuate become substantially wider.

To elucidate the steep non-linear change of the disper-
sion curves as functions of DV̂ , I turn attention again to
Eq. (26), and evaluate q̂A=DV̂ as function of DV̂ . The rela-
tion is plotted in Fig. 5(a) for a thin tube, when clamped at
~kz ¼ 2=3; 1, and 2, and when it is axially free, denoted by
the dashed (orange), dotted (black), dotted-dashed (ma-
genta), and continuous curves, respectively. It is observed
how the non-linear finite deformation manifests itself in a
drastic rise of charge beyond a certain voltage. The dynamic
consequence is the previously mentioned substantial rise in
velocity. Fig. 5(a) also explains the relatively limited veloc-
ity rise when the tube is not clamped: it collapses before suf-
ficient charge accumulates. In this case, the curve terminates
at DV̂ ’ 0:68 and q̂A=DV̂ ’ 2, indicated in the figure with
the X mark. Conversely, by applying boundary constraints
the tube resistance to breakdown increases and the loading
path extends, in agreement with related works.21,23

Therefore, the loading path includes configurations consist-
ing of a sufficient charge to trigger the velocity jump.
Further, a comparison of the curves associated with different
axial constraints explains why when tensile strain was
applied less voltage was needed, as a lower value was suffi-
cient to reach the steep segment of the curve.

FIG. 3. Mechanically constrained tube. Normalized velocities ĉ as functions
of the normalized wavenumber k̂ for ((a) and (c)) a thin and ((b) and (d)) a
thick tube, axially constrained at ((a) and (b)) ~kz ¼ 1, and ((c) and (d))
~kz ¼ 2. The continuous curves, dashed curves with bullet marks (green),
dotted-dashed curves (red), and continuous curves with diamond marks
(purple) correspond to the normalized voltages DV̂ ¼ 0; 1

3 ;
1
2 ; and 1,

respectively.

FIG. 4. Mechanically constrained tube. Normalized frequencies x̂ as func-
tions of the normalized wavenumber k̂ for (a) a thin and (b) a thick tube, axi-
ally constrained at ~kz ¼ 1. The continuous curves, dot-dashed curves (red),
and continuous curves with diamond marks (purple) correspond to the nor-
malized voltages DV̂ ¼ 0; 1

2 ; and 1, respectively.

FIG. 5. (a) The ratio q̂A

DV̂
¼ RA

H ln

ffiffiffiffiffiffiffiffiffiffiffi
AR2

BþB
p
ffiffiffiffiffiffiffiffiffiffiffi
AR2

AþB
p as function of DV̂ . The dashed

(orange), dotted (black), dotted-dashed (magenta), and the continuous curve
correspond to a thin tube when clamped at ~kz ¼ 2

3 ; 1 and 2, and when it is
free to expand, respectively. The X mark denotes the collapse of the tube.
(b) The velocities and frequencies of the second mode at wavelength 0:1p
mm, as functions of the voltage. The continuous, dashed (cyan), and dotted
(brown) curves correspond to the properties of the products Fluorosilicone
730, VHB-4910, and ELASTOSIL RT-625, respectively.
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Fig. 5(b) shows the velocities and frequencies of the sec-
ond mode as functions of the voltage, at a representative
wavenumber of k̂ ¼ 2. To provide a sense for the practical
values of the quantities, it is given in a dimensional form,
using the properties of three commercially available materi-
als. Hence, the continuous, dashed (cyan), and dotted
(brown) curves correspond, respectively, to the products
VHB-4910, ELASTOSIL RT-625, and Fluorosilicone 730;
Table I provides their approximate physical properties, as
found in the literature.39,40 Similar to the trends exhibited in
Fig. 5(a), the curves demonstrate non-linear dependency on
the voltage. In particular, these show how a wide range of
frequencies and velocities pertains to a relatively small range
of applied voltage, which depends on the permittivity-
stiffness ratio of the material.

VI. SUMMARY

The equations describing torsional motions of finitely
deformed dielectrics were formulated, and were found essen-
tially different from their elastic counterparts. An analytical
investigation reveals that the non-dispersive fundamental
mode always exists. It also shows how all higher modes con-
verge to that mode in the limit of short waves. To generally
determine these modes, a numerical scheme was applied.
The resultant dispersion relations were evaluated for differ-
ent tube thicknesses, axial constraints, and bias electric
fields. It was observed how the axial clamping enhances the
resistance to breakdown. This, in turn, enabled the primary
observation: a drastic rise of the velocities and frequencies
of higher modes beyond a certain amount of voltage. The
exhibited non-linear dependency indicates that significant
changes in these quantities can be induced by relatively
small changes in the voltage. The axial constraint promotes
the accumulation of sufficient charge to commence this phe-
nomenon. The thickness of the tube affects the amount of
voltage needed, as thinner tubes require less voltage.

These results suggest the use of dielectric elastomer
tubes as possible mechanisms to accelerate torsional modes
across certain frequencies, and their filtering across other fre-
quencies, by tuning the applied voltage.

APPENDIX: THE COMPONENTS OF THE
INSTANTANEOUS TENSORS

The non-vanishing components of A; B; and C on the
principal axes of the deformation (17) are

A11 ¼ A22 ¼ A33 ¼
1

!
; (A1)

B121 ¼ B211 ¼ B323 ¼ B233 ¼
1

2
B222 ¼

1

!
dr; (A2)

C1111 ¼ C2121 ¼ C3131 ¼ lk2
z ; (A3)

C1212 ¼ C2222 ¼ C3232 ¼ lk2
r þ

1

!
d2

r ; (A4)

C1313 ¼ C2323 ¼ C3333 ¼ lk2
h; (A5)

where the indices ð1; 2; 3Þ correspond to ðz; r; hÞ. The tensors
B and C are non-homogeneous, since dr; kr; and kh are func-
tions of r.
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