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A B S T R A C T

Recently developed soft materials exhibit nonlinear wave propagation with potential applications in energy
trapping, shock mitigation and wave focusing. We address finitely deformed materials subject to combined
transverse and axial impacts, and study the resultant nonlinear waves. We determine the dependency of the
induced motion on the impact characteristics, pre-deformation and the employed constitutive models. When
using the neo-Hookean constitutive model, we find it cannot capture shear shocks and tensile-induced shocks, in
contrast with experimental results on soft materials. Conversely, we find that the Gent model predicts that
compressive impact may not be sufficient to induce a quasi-pressure shock—yet it may induce a quasi-shear
shock, where tensile impact can trigger quasi-pressure shock—and may simultaneously trigger a quasi-shear
shock. These features are in agreement with experimental data. Further, we show that the tensile impact must be
greater than a calculated threshold value to induce shock, and demonstrate that this threshold is lowered by
application of pre-shear.

1. Introduction

Recent technological advances have promoted the development of
soft materials with reconfigurable properties, capable of undergoing
reversible finite deformations (Bandyopadhyay et al., 2015; Truby and
Lewis, 2016; He et al., 2017; Kim et al., 2017). The nonlinearities as-
sociated with these materials give rise to unique transport properties,
that can be exploited for tunable dynamic response, energy trapping,
shock mitigation and wave focusing (Nadkarni et al., 2014; Shmuel and
Band, 2016; Lints et al., 2017; Lustig and Shmuel, 2018; Giammarinaro
et al., 2018). These potential applications have led to a revived scien-
tific interest in nonlinear wave propagation of elastic continua (Raney
et al., 2016; Xin and Lu, 2016; Deng et al., 2017). The pioneering
theoretical work in the field is mainly attributed to Carroll (1967, 1974,
1978), followed by the works of Boulanger and Hayes (1992),
Rajagopal (1998) and more recently Destrade and Saccomandi (2005).
The focus of these studies is on the existence of harmonic waves with
finite amplitude and constant waveforms. Such waves are the exception
rather than the rule when nonlinearities are accounted for. Our focus is
on finite amplitude smooth waves whose waveform changes in soft
materials under impact, which distinguishes what follows from the
foregoing studies. Specifically, we study their coalescence to shock-
s—propagating surfaces of discontinuity in the governing fields.

An excellent cover of the research on shocks in solids is given by
Davison (2008). One of the central works on shocks in soft materials

was by Knowles (2002), who analyzed a one-dimensional bar with
cubic stress–strain relation under tensile impact. Using the concept of
thermodynamic driving force, Knowles theoretically showed that tensile
shocks emerge when the impact is sufficiently strong. Niemczura and
Ravi-Chandar (2011a,b) have designed and executed corresponding
experiments using strips of latex and nitrile rubber. Our objectives are
to (i) account also for transverse displacements and their coupling with
the axial displacements; (ii) comprehensively study the effect that
combined pre-shear and pre-stretch have on finite amplitude waves
induced by simultaneous shear and axial impacts; (iii) characterize the
dependency of the resultant waves on the constitutive models.

Finite amplitude shocks in similar settings were addressed by sev-
eral researchers, whose objectives are different that the objectives in
this work. Davison (1966) proposed a theory with admissibility con-
ditions for shocks to obtain general formulas and demonstrated his
theory using an example problem. Aboudi and Benveniste (1973) de-
veloped a finite difference-based scheme to solve the equations gov-
erning impact-induced nonlinear waves. Yongchi and Ting (1983) in-
troduced the concept of stress paths to determine general solutions,
and exemplified their approach using second order isotropic
materials. More recently, Scheidler (2000) derived universal re-
lations—independent of the specific constitutive relation—between the
governing fields and the wave velocities.

In the sequel, we employ the theory of Davison (1966) to obtain and
analyze explicit solutions for plane waves of finite amplitude in semi-
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infinite soft materials under different pre-deformations and impacts. We
employ the two most prominent constitutive models for soft materi-
als—the compressible neo-Hookean and Gent models—to describe the
stress–strain relation (Gent, 1996; Puglisi and Saccomandi, 2015).
While both models account for finite deformations, the Gent model
incorporates an additional nonlinearity, aimed at capturing the stif-
fening that rubber exhibits due to the limited extensibility of its
polymer chains. Interestingly, the Gent model is also useful to describe
soft tissues, which stiffen due to the stretching of their collagen fibers
(Horgan, 2015). This nonlinearity, in turn, significantly affects the re-
sponse of the material to impact and formation of shocks, as we show in
what follows.

In the limit of small strains, the axial and transverse impact of a
semi-infinite medium excites two types of waves, namely, shear and
pressure waves. These waves do not interact with each other, and their
propagation is independent of the specific loading program and initial
state of the material; shocks propagate with the same velocities. By
contrast, these waves are generally coupled in finite elasticity, owing to
the Poynting effect (Cioroianu and Cornelis, 2013; Horgan and Murphy,
2017); their velocity depends on the constitutive nonlinearity, initial
deformation and loading program. In this work, we thoroughly study
the effect of these parameters on the propagation of finite amplitude
waves.

The findings from the neo-Hookean model are relatively similar to
the linear theory, as in the considered settings the model does not
capture the coupling between axial and transverse displacements.
Specifically, smooth shear waves propagate at a constant velocity as in
the linear theory, and cannot evolve to shock. Smooth pressure waves,
however, propagate in a velocity that varies as a function of the axial
displacement gradient, and coalesce into shock only when the axial
impact tends to compress the material, e.g., when a pre-stretched ma-
terial is released. Accordingly, there are no tensile-induced shocks in
neo-Hookean materials. The neo-Hookean predictions are therefore
incompatible with experimental data on shear shocks and tensile-in-
duced shocks in soft materials (Catheline et al., 2003; Niemczura and
Ravi-Chandar, 2011b).

The predictions of the Gent model are significantly different and
more interesting than the neo-Hookean model. Firstly, the model cap-
tures the coupling between the transverse and axial motions. We refer
to waves at which the only displacement that retained upon lineariza-
tion is the transverse (resp. axial) displacement as quasi-shear
(resp. quasi-pressure). Their velocities depend both on the initial state
and impact program. We characterize this dependency, and determine

when they coalesce into shocks. Interestingly, we find that compressive
impact may not result in a quasi-pressure shock—yet it may excite a
quasi-shear shock, while tensile impact can induce a quasi-pressure
shock and a quasi-shear shock at the same time. We show that the
tensile impact must be greater than a threshold value to induce shock,
and demonstrate that this threshold is lowered when applying pre-
shear. Contrary to the neo-Hookean model, the Gent model is able to
recover the aforementioned experimental results.

The study is presented in the following order. Section 2 contains the
mathematical description of the problem, and its general resolution for
smooth and shock wave solutions (Davison, 1966). The generic solution
is specialized in Sections 3 and 4, respectively, to the compressible neo-
Hookean and Gent models, where we characterize the dependency of
the wave velocity on the loading conditions and model parameters, and
qualitatively analyze the criterion for shock. Section 5 specializes and
quantifies this criterion in terms of the loading parameters, when the
material is initially unstrained. Section 6 extends the study of this cri-
terion to finitely strained materials. We conclude this paper with a
summary of our results and comments on future work in Section 7.

2. Problem statement and method of solution

The general treatment of the problem using a semi-inverse approach
dates back to Davison (1966), which we revisit here for completeness.
Consider a semi-infinite soft and compressible material occupying the
region X1≥ 0 in a reference configuration. The material is hyperelastic,
such that the 1st Piola–Kirchhoff stress P is derived from a strain energy
function Ψ. Let χ denote the deformation of material points from a
reference coordinate X to the current coordinate x, where =F X is
the deformation gradient, then =P F . We focus on (initially) isotropicmaterials, for which

= + +P F FF F F1 2 T 3 T (1)

for some response functions αi that depend onΨ. At the initial state, the
material is sheared and strained along X1 homogeneously. Subse-
quently, the body is subjected to a combination of transverse and axial
impact at its boundary. Accordingly, the continuous mapping χ (Fig. 1)

= + = + =x X u X t x X u X t x X( , ), ( , ), ,1 1 1 1 2 2 2 1 3 3 (2)

is subjected to the initial and boundary conditions

Fig. 1. A unit cube within a semi-infinite body in the (a) reference configuration; (b) pre-deformed configuration under a uniform shear QI and axial displacement
gradient MI . (c) Illustrative impact-induced surface of discontinuity at t>0.
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the fields M,Q, R and S are the axial displacement gradient, transverse
displacement gradient, axial velocity and transverse velocity, respec-
tively, where we recall that at =t 0 the fields are homogeneous. Thus,
Eq. (3) describes a semi-infinite body that is initially strained with a
uniform shear QI and axial displacement gradientMI, and subjected to a
combination of transverse and axial impacts, denoted by QB and MB,
respectively; further, the transverse and axial velocities at the boundary
are denoted by SB and RB, respectively. The problem at hand is to de-
termine the resultant motion ui(X1, t) for t>0.

2.1. Smooth and acceleration wave solutions

Assuming χ is continuously differentiable twice almost everywhere,
the differential equations governing the problem (except at singular
surfaces) are=P· ,L ttX , (4)
where = J ,L =J Fdet and ρ is the current mass density. Eq. (4) takes
the form

= =P x
t

P x
t

, ,L L11,1
2 1
2 21,1

2 2
2 (5)

for the motion considered in Eq. (2), and the constitutive form (1). We
use the variables R, M, Q and S defined in Eq. (3) to reduce the order of
Eq. (5) and obtain= = = =P R P S M R Q S, , , .L t L t t t11,1 , 21,1 , , ,1 , ,1 (6)
By application of the chain rule, we rewrite Eq. (6)1,2 as+ = + =M Q R M Q S, ,t t,1 ,1 , ,1 ,1 , (7)
where

= = = =P
M

P
Q

P
M

P
Q

1 , 1 , 1 , 1 .
L L L L

11 11 21 21

(8)
We firstly seek smooth wave solutions that depend on a single in-
dependent variable. We set this variable to be =c X t/ ,1 and obtain+ + = + + = + =+ =M Q cR M Q cS R cM
S cQ

0, 0, 0,
0,

c c c c c c c c

c c

, , , , , , , ,

, , (9)
from Eqs. (6)3,4 and (7). Substitution of Eqs. (9)3 and (9)4 into Eqs. (9)1
and (9)2, respectively, provides+ = + =c M Q M c Q( ) 0, ( ) 0.c c c c2 , , , 2 , (10)
These equations have a non-trivial solution only if+ =c c( ) 0.4 2 2 (11)
Solving for c gives the characteristic wave velocities1

= + ± + = ±c c1
2
[ ( ) 4 ] : .2 2 2

(12)
In the limit of linear elasticity, the velocities +c and c reduce to the
velocities of pressure and shear waves, respectively. In this limit= = =+c c, , 0, and accordingly there is no coupling
through the equations of motion between the corresponding waves.

We refer to the slow and fast smooth waves associated with c and

+c as quasi-shear and quasi-pressure waves, respectively. We assume
that these waves spatially expand in the course of propagation, as il-
lustrated in Fig. 2(a) by the gray regions. We further assume that fields
in the white cones separating these waves and the rays =t 0 and =X 01
are uniform. The cone that is bounded by =t 0 (resp. =X 01 ) is denoted
by (resp. ). The middle cone is denoted by . The fields in these
regions are denoted with the subscripts B, I and U. To determine the
velocity field in between the front ( =X V tSU1 ) and back ( =X V tBS1 )
characteristics of the quasi-shear wave, we substitute c back into
Eq. (10) and obtain

=M
Q c

d
d

.2 (13)
These characteristics define surfaces of discontinuity for the second
derivatives of ui, and are termed acceleration waves. The first derivatives
are continuous, and thus Eq. (13) is subjected to a compatibility condi-
tion in the form of the continuity of M, such that = =M Q Q M( ) ,B B
where we recall that c is a function ofM and Q. Similarly, to determine
the velocity field in between the front ( =X V tPI1 ) and back ( =X V tUP1 )
characteristics of the quasi-pressure wave we substitute +c back into
Eq. (10) and obtain

= +Q
M

cd
d

,
2

(14)
subjected to the compatibility condition = =Q M M Q( )I I for the ac-
celeration waves. Let +Q (resp.Q ) denote the value of Q at the back
(resp. front) of the quasi-pressure (resp. shear) wave; the continuity
condition between the shear and pressure waves is then reads= =+Q Q Q: U .

2.2. Shock wave solutions

Smooth waves bounded by acceleration waves evolve only when the
calculated velocity at the back of the wave is smaller than the velocity
at the front of the wave, and changes monotonically in between. This
requirement can be written as

< < < <+
+

V c Q V c
Q

Q Q Q V c M V

c
M

M M M

( ) , d
d

0 ( , ), ( ) ,

d
d

0 ( , ).

BS SU B U UP PI

U I (15)
Shocks evolve when conditions (15) fail to hold, and define a surface of
discontinuity for all the governing fields except the displacements. We
restrict attention to the cases when either < <V c Q V( )BS SU and/or< <V c Q V( )BS SU are violated. The integral form of Eq. (4) is then used
to derive the jump conditions+ = + = + =+ =R V P M V R S V P
Q V S

0, 0, 0,
0;

L L11 21

(16)
here, V is the shock velocity and is the jump in (∘) between the
regions ahead and behind the shock. Specialization of Eq. (16) to the
loading (3) delivers the following conditions for the quasi-shear shock
and quasi-pressure shock waves= =P Q P M P Q P M0, 0,UB UB UB UB IU IU IU IU11 21 11 21

(17)
respectively, where paired subscripts of denote that the jump is
between the corresponding regions; each of these equations provides a
connection between QU and MU. The shock velocities resulting from
Eq. (16) are

= =V P
Q

V P
M

, ,S
UB

L UB
P

IU

L IU

21 11

(18)
where VS and VP correspond to the quasi-shear and quasi-pressure
shock velocities, respectively. Depending on the loading program and

1 These velocities are Lagrangian, measured relative to the reference co-
ordinate X1. The Eulerian velocities, measured with respect to the moving co-
ordinate x1, are + ±M c(1 ) (Davison, 2008).
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the specific constitutive behavior, four combinations of shear and
pressure waves can develop, i.e., smooth-smooth (Fig. 2a), shock-
smooth (Fig. 2b), smooth-shock (Fig. 2c), and shock-shock (Fig. 2d). In
general, the theory does not identify a priori which combination takes
place. The course taken is to use a semi-inverse method of solution, i.e.,
firstly assume smooth-smooth solutions, and examine the compatibility
of the corresponding set of equations. If the compatibility fails to hold,
we assume that shock-smooth waves propagate, and examine the
compatibility of the corresponding equations. This process is continued
until we find a compatible set and identify the combination that takes
place. The foregoing combinations cover all the possibilities when c is
monotonic.

3. Analysis of compressible neo-Hookean materials

The study of smooth waves and shocks of finite amplitude in neo-
Hookean and Gent materials is carried out next, using the theory in
Section 2. We begin with the neo-Hookean model

= +µ I µ J µ J
2
( 3) ln

2 3
( 1) ,1 2

(19)
where =I F Ftr ,1 T and κ and μ correspond to the bulk and shear moduli,
respectively, in the limit of small strains. For this model, the velocities
obtained from Eq. (12) are

= = = = + + +++c µ c µ M M
M

, ( 2 4)
3 ( 1)

.
L L L

2

2 (20)
Notably, since = 0 the velocities and corresponding waves are not
coupled. Stated differently, the axial displacement gradientM and shear

field Q evolve independently in the material.
The neo-Hookean model predicts that (pure) smooth shear waves

propagate with a constant velocity, and hence cannot evolve to shock.
Therefore, the model is incompatible with experimental demonstrations
of shear shocks in soft solids (Catheline et al., 2003; Jacob et al., 2007).

The neo-Hookean model predicts that (pure) pressure waves pro-
pagate as smooth waves with the velocity +c only if MB>MI, since +c is
a monotonically decreasing function of M. Mechanically speaking, the
mathematical condition implies that only compressive impact leads to
shock. Accordingly, the neo-Hookean model is incapable of recovering
experimental data of tensile-induced shocks in soft materials (Kolsky,
1969; Niemczura and Ravi-Chandar, 2011b). The dependency of +c on
M is exemplified in Fig. 3(a), which shows +c as a function of M (da-
shed-blue curve), for the representative parameters

= = =µ1MPa, 200kPa, 1000kg/m ;L
3 (21)

for comparison, the shear wave velocity is also displayed (orange line).
To complete the solution, we need to determine MU and QU; owing to
the decoupling of the velocities, we have that =M MU B and =Q QU I . If
MB<MI, then the pressure wave will coalesce into shock with the ve-
locity (18)2.

By way of example, we examine a material at the initial compres-
sion state =M 0.4I and consider two different impacts at the
boundary, namely =M 0.6B1 and =M 0.1B2 . These impacts are in-
dicated in panel 3(a) by the triangle M( )B1 and square M( )B2 marks. The
former propagates as shock with the velocity =V 43.58m/s,P since<M MB I1 . The latter propagates as a smooth wave with the velocity
range < <+c M35.01m/s ( ) 40.27m/s. The corresponding distributions
along X1 of M for the two boundary conditions at =t 1ms (solid curves)

Fig. 2. Characteristic curves as solutions to boundary and initial conditions. For monotonic c, the solution to the quasi-shear and quasi-pressure waves is one of the
following combinations: (a) smooth-smooth, (b) shock-smooth, (c) smooth-shock, (d) shock-shock, depending on the boundary and initial conditions. Dot-dashed and
continuous curves correspond to shock and acceleration waves solutions, respectively. Smooth waves are denoted in gray.
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and =t 5ms (dashed curves) are shown in Fig. 3(b). We observe that
indeed MB1(black) is associated with the propagation of strain dis-
continuity. Conversely, applying MB2 (orange) yields smooth spreading
of strain bounded between acceleration waves, identified by dis-
continuities in the derivative of M.

4. Analysis of compressible Gent materials

The second model we employ is the compressible Gent model
(Gent, 1996). This model successfully captures the stiffening of elas-
tomers at high strains due to the finite extensibility of their polymer
chains. At the same time, it is a simple three-parameter model that
enables in certain cases the derivation of analytical solutions, which
makes it a popular model in soft elasticity (Horgan, 2015; Puglisi and
Saccomandi, 2015). The corresponding Gent strain energy density is
(Lopez-Pamies and Castañeda, 2007)

= +µJ I
J

µ J µ µ
J

J
2

ln 1 3 ln
2 3

( 1) ,m
m m

1 2
(22)

where Jm models the elastomeric strain stiffening; in the limit Jm→∞,
the neo-Hookean model is recovered. Application of Eq. (12) to the
Gent model (22) provides the velocities

= + + + +
± + + +

±c a µ
a

a Q J µJ
a

a µ Q J a a a a µJ a Q µJ a µ
a a

2 2
( )

2
48 ( 2 2 )

2 3
,

L L

m m

L

m m m

L

2 3

1
2

1
2 2

2
2

1
6 2 2 2

1
2

2
2

3 1
4

1
2 2

2
2 2

2
2

1
2

(23)
where = + = + +a M a M M Q J1, 2 ,m1 2 2 2 and =a µ µ

J3
2
3

2
m
.

Notably, both +c and c depend nonlinearly on Q and M. These velo-
cities, in turn, yield nonlinear differential Eqs. (13) and (14) for Q(M)
and M(Q), which cannot be solved analytically. To investigate the de-
pendency of the velocities on the parameters of the problem, we use
numerical solutions obtained by the Runge–Kutta solver of the software
Wolfram Mathematica 11.3 (2018).

We begin with the study of c in Fig. 4. In Panel 4(a) we evaluate c
as a function of Q for the parameters in Eq. (21) and =J 10,m at dif-
ferent impacts. Specifically, we evaluate c for the boundary conditions= =Q M0, 0B B (solid black), = =Q M1, 0B B (dashed blue) and= =Q M2, 0.6B B (dot-dashed brown). We observe that the boundary
conditions have little effect on the curve of c , which is a monotonically
increasing function of Q. As we will demonstrate in panels 4(b)–(d), this
monotonicity is independent of the specific material parameters.
Therefore, shear impact loading results in a shock, while shear impact
unloading results in a smooth wave. We recall that this phenomenon

cannot be captured by the neo-Hookean model, where shear shock
cannot evolve. Panel 4(b) shows c Q( ) for = =Q M0, 0,B B and dif-
ferent values of the locking parameter Jm. Specifically, the solid black,
dashed cyan, dot-dashed brown, and dashed blue curves correspond to=J 10, 15, 30m and Jm→∞, respectively. We observe that the velocity
decreases as Jm increases, while its monotonicity in Q is maintained. In
the limit Jm→∞ the velocity is independent of Q, thereby recovering
the neo-Hookean response, as it should.

Panel 4(c) shows c Q( ) for = =Q M0, 0,B B and different values of
the shear modulus μ. Specifically, the solid black, dashed cyan and dot-
dashed brown curves correspond to =µ 0.2MPa, 0.5MPa and 1MPa,
respectively. The velocity is greater for higher values of μ, as expected.
Here again, the monotonicity in Q is kept.

Panel 4(d) shows c Q( ) for = =Q M0, 0,B B and different values of
the bulk modulus κ. Specifically, the solid black, dashed cyan and dot-
dashed brown curves correspond to = 0.5MPa, 1MPa and 5MPa, re-
spectively. At small amounts of shear (Q≤ 1.5), the velocity is in-
dependent of κ. When the material is severely sheared (Q>1.5), the
coupling between the modes becomes substantial, and the quasi-shear
velocity is higher in materials with greater bulk modulus. Again, in-
dependently of κ, the velocity is a monotonically increasing function of
Q.

We analyze next the quasi-pressure wave velocity +c in Fig. 5. Panel
5(a) shows +c as function of M for the initial conditions = =Q M0, 0I I
(solid black), = =Q M1, 0I I (dashed cyan), and = =Q M2, 0.6I I
(dot-dashed brown). Contrary to the monotonicity of c , we observe
that beyond a critical deformation, denoted Mcr, the curve changes its
trend from downward to upward. The value ofMcr decreases for greater
values of QI. Since the condition for smooth waves depends on the sign
of +c

M
d
d

and the location of MU,MI and Mcr, we can deduce if shocks
emerge from this diagram, as we will demonstrate later.

Panel 5(b) shows +c M( ) for = =Q M0, 0,I I and different values of
the locking parameter Jm. The legend is identical to the legend in panel
4(b). We observe that the slope beyond Mcr decreases as Jm increases,
until it vanishes in the limit Jm→∞, thereby recovering the neo-Hoo-
kean response, as it should.

Panel 5(c) shows +c M( ) for = =Q M0, 0,I I and different values of
the shear modulus μ. The legend is identical to the legend in panel 4(c).
The velocity is higher for greater values of μ, while the value of Mcr
remains unchanged.

Panel 5(d) shows +c M( ) for = =Q M0, 0,I I and different values of
the bulk modulus κ. The legend is identical to the legend in panel 4(d).
As expected, the velocity is higher when κ is greater, where the dif-
ference decreases as the strain increases. We observe that the value of
Mcr is independent of κ.

Fig. 3. (a) Pressure (dashed-blue curve) and shear (orange line) wave velocities as functions of M, for a neo-Hookean material with the material parameters (21). The
triangle (MB1) and square (MB2) marks correspond to boundary conditions that result in smooth and shock waves, respectively, when the initial condition is =M 0.4I
(circle mark). (b) Corresponding distributions along X1 of the axial displacement gradient M for MB1 (black) and MB2 (orange) at =t 1ms (solid curves) and =t 5ms
(dashed curves). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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5. Combined shear and axial impact of unstrained materials

We provide next a more comprehensive analysis of the effect of the
boundary conditions QB and MB on waves in unstrained materials
( = =M Q0, 0I I ), starting with quasi-shear waves. We recall that shear
waves in neo-Hookean materials always propagate as smooth waves,

since c is constant. To analyze quasi-shear waves in Gent materials, we
utilize Fig. 4(a), to deduce that these waves will always propagate as
shocks, since > 0c

Q
d
d for any > =Q Q0B I .

We proceed with the analysis of the effect on quasi-pressure waves,
which requires the calculation of MU. As stated in Section 3, the value

Fig. 4. The quasi-shear wave velocity c as function of Q, for the Gent material at the boundary conditions = =Q M0, 0,B B material parameters (21) and =J 10.m
Each panel shows c for different values of the (a) boundary conditions: = =Q M0, 0B B (solid black), = =Q M1, 0B B (dashed cyan) and = =Q M2, 0.6B B (dot-
dashed brown); (b) locking parameter: =J 10m (solid black), 25 (dashed cyan), 30 (dot-dashed brown) and ∞ (blue dashed); (c) shear modulus: =µ 0.2MPa (solid
black), 0.5MPa (dashed cyan) and 1MPa (dot-dashed brown); (d) bulk modulus: = 0.5MPa (solid black), 1MPa (dashed cyan) and 5MPa (dot-dashed brown). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. The pressure wave velocity +c as function of M, for the Gent material at the boundary conditions = =Q M0, 0,B B material parameters (21) and =J 10.m Each
panel shows +c for different values of the (a) boundary conditions: = =Q M0, 0B B (solid black), = =Q M1, 0B B (dashed cyan) and = =Q M2, 0.6B B (dot-dashed
brown); (b) locking parameter: =J 10m (solid black), 25 (dashed cyan), 30 (dot-dashed brown) and ∞ (dashed blue); (c) shear modulus: =µ 0.2MPa (solid black),
0.5MPa (dashed cyan) and 1MPa (dot-dashed brown); (d) bulk modulus: = 0.5MPa (solid black), 1MPa (dashed cyan) and 5MPa (dot-dashed brown). (For in-
terpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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for neo-Hookean materials is simply =M M ,U B since the waves are not
coupled. Then, independently of QB and for any MB<0, pressure
shocks emerge, since <+ 0c

M
d
d fromMB<0 to =M 0I (Fig. 3a). Hence, in

the (QB, MB)-plane we identify loadings that result in smooth quasi-
pressure waves with the half-spaceMB>0, as illustrated in Fig. 6(a) by
the cyan color. Thus, only compressive impacts create shocks. Again we
note that this is incompatible with experiments showing tensile-induced
shocks.

The value ofMU in Gent materials depends onMB and QB, due to the
coupling between the fields, and requires the use of Eq. (17)1. Note that=Q 0U in Eq. (17)1, since we assume that the shear impact is slower
than VSU. Smooth quasi-pressure waves propagate when 0<MU<Mcr,
since in this interval <+ 0,c

M
d
d as illustrated in Fig. 5(a). Conversely,

quasi-pressure shocks propagate when Mcr <MU, since in this interval+c losses its monotonicity. The combinations of QB and MB that yield
0<MU<Mcr and smooth quasi-pressure waves are illustrated in
Fig. 6(a) on the (MB, QB)-plane by the gray color. Interestingly, in the
absence of shear impact ( =Q 0B ), there exists a threshold value of
tensile impact ( =M 0.25B ) above which shocks emerge. In other words,
the Gent model predicts that sufficiently strong tensile impacts induce
shocks. Notably, Knowles (2002) arrived to the same conclusion when
analyzing the tensile impact of soft rods with cubic stress–strain
equation, using the concept of thermodynamic driving force. We ob-
serve that the threshold value of the tensile impact for shock is lowered
by applying simultaneously shear impact. Furthermore, the application
of shear impact creates a threshold value for compressive impacts,
below which shocks cannot evolve. We conclude this part by evaluating
in panel 6(b) the strain fields M (dashed orange) and Q (solid black)
from the shock-smooth wave at the boundary conditions=M Q( , ) (0, 2.2)B B at =t 10ms2 We observe that the quasi-shear shock
excites also axial strains (19.5 cm< X1< 35.5 cm), and the quasi-
pressure smooth wave is not accompanied with shear strains
(35 cm< X1< 35.5 cm).

6. Combined shear and axial impact of finitely strained materials

We complete our study by analyzing more extensively the general
case of pre-strained materials subjected to combined impact. We recall
that for neo-Hookean materials, the field MU is independent of MI and
QI, hence we focus on Gent materials. The complexity of the corre-
sponding analysis stems from the fact that we do not know a priori
which kind of combination of waves develops, since MU and QU are
functions of all the prescribed quantities {MI, QI, MB, QB}, and Mcr

depends on MI and QI. As mentioned in Section 2, we proceed by as-
suming that the combination is smooth-smooth (Fig. 2a). We solve
Eqs. (13) and (14) to determine MU and QU and examine if our as-
sumption holds via Eq. (15); otherwise, we assume the combination is
shock-smooth (Fig. 2b), and solve Eqs. (14) and (17)1 to determineMU
and QU, and examine if our solution satisfies Eq. (15) and so forth,
until we find a compatible set. We illustrate in Fig. 7 the resultant
wave classification as functions of MB and QB for Gent materials with
the properties (21) and =J 10m . Specifically, panels 7(a)–(d) corre-
spond to =M Q( , ) (0, 1.5), (0, 1.71), (0, 2), ( 0.2, 0.5), (0, 0.5),I I and
(0.1, 0.5), respectively. The blue, green, orange and red regions cor-
respond to smooth-smooth, shock-smooth, smooth-shock and shock-
shock, respectively. The white regions correspond to impacts for
shocks evolve due to loss of monotonicity of +c , and are outside our
scope.

We observe that by moving vertically up (resp. down), i.e., im-
parting shear loading (resp. unloading) impact, we always enter a
quasi-shear shock (resp. smooth) region3 During shear impact we may
or may not enter a quasi-pressure shock region, depending on the initial
strain. For instance, in panel 7(a), shear loading impact results in
smooth quasi-pressure waves, while in panel 7(c) it results in quasi-
pressure shocks. These panels demonstrate that the results are reversed
upon impact unloading.

The effect of axial impacts is more complex. Specifically, compres-
sive impact and tensile impact may or may not trigger quasi-pressure
shock, depending on the initial state. For example, panel 7(a) shows
that only compressive impact induces quasi-pressure shock when the
pre-strain is =Q 1.5I ; when the initial shear is increased to 2 (panel 7 c),
the trend is reversed, i.e., only tensile impact results in quasi-pressure
shock. Panel 7(b) shows a unique state of initial shear ( =Q 1.7I ), at
which any axial impact will create quasi-pressure shock. As pointed out
in Section 4, the value of Mcr decreases as QI increases, and for =Q 1.7I
its value is 0. This implies that in a material that was strained accord-
ingly, any axial impact will propagate faster than =+c M( 0),I hence
coalesce into shock.

By comparing panels 7(d)–(f) where QI is fixed and MI is increased,
we observe that MI has little effect on the value of Mcr and the
threshold value of impact for tensile shock. The curve that separates
regions of quasi-pressure smooth waves from corresponding shocks
passes through MI, and when MI>0 (resp.MI<0) the region of im-
pact that creates smooth quasi-pressure waves is narrower (resp.
wider).

Fig. 6. (a) Impacts that yield smooth pressure waves in unstrained materials as regions in the (M Q,B B)-plane. Cyan and Gray denote neo-Hookean and Gent materials,
respectively. The material parameters are given in Eq. (21), where for the Gent material we also set =J 10m . (b) Shock-smooth wave solutions for an unstrained Gent
material, for the boundary conditions = =M Q0, 2.2B B . (b) the strain fields M (dashed orange) and Q (solid black) from the shock-smooth wave due to the impact=M Q( , ) (0, 2.2)B B at =t 10ms.

2 The procedure of obtaining MU for =M Q M Q( , , , ) (0, 0, 0.2. 2)I I B B is illu-
strated in Appendix A.

3 The admissibility conditions for quasi-shear waves hold also in the white
regions next to the blue regions. The admissibility conditions for the quasi-shear
waves is violated in the white regions next to the green regions.
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We conclude our study by evaluating in Fig. 8 the strain fields M
(dashed orange) and Q (solid black) from the smooth-smooth (panel 8a)
and smooth-shock (panel 8b) waves at the conditions=M Q M Q( , , , ) ( 0.6, 2, 0, 1)I I B B

4 and (0.1, 1.5, 0.3, 0.5), respectively.

Evidently, quasi-shear waves excite also axial strains, e.g., the interval
16 cm< X1< 28 cm in panel 8(a), and quasi-pressure shocks excite
also shear strains, e.g., =X 35 cm1 in panel 8(b).

Fig. 7. Regions in the (M Q,B B)-plane that induce smooth-smooth (blue), shock-smooth (green), smooth-shock (orange), and shock-shock (red) waves in Gent
materials with the properties (21) and =J 10m . Panels (a)-(f) correspond to =M Q( , ) (0, 1.5), (0, 1.71), (0, 2), ( 0.2, 0.5), (0, 0.5),I I and (0.1, 0.5), respectively. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Wave solutions for a Gent material with the parameters = = =µ1MPa, 200 kPa, 1000L =Jkg/m , 10m3 . Each panel shows M (solid-black) andQ (dashed-
orange) as function of X1, at =t 10ms, for the conditions (a) = = = =M Q M Q0.6, 2, 0, 1I I B B ; (b) = = = =M Q M Q0.1, 1.5, 0.3, 0.5I I B B .

4 The procedure of obtaining MU for =M Q M Q( , , , ) ( 0.6, 2, 0, 1)I I B B is illu-
strated in Appendix A.
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7. Summary

The general aim was to study smooth and shock waves of finite
amplitude in soft materials described by the two most prominent con-
stitutive models, namely, the neo-Hookean and Gent models
(Gent, 1996). Our study was carried out for the plane motion of a fi-
nitely strained semi-infinite material, in response to combined trans-
verse and axial impacts. Our specific objective was to characterize the
effect of the constitutive modeling, pre-deformation and impact pro-
gram have on resultant waves.

The analysis of the neo-Hookean model provided the following
observations. We found that the resultant axial and transverse motions
in neo-Hookean materials are uncoupled. Independently of the specific
boundary conditions, smooth shear waves propagate at a constant ve-
locity, and thus cannot coalesce into shock. The velocity of smooth
pressure waves is a monotonically decreasing function of the axial
impact, hence coalesce into shock when the impact compresses the
material, as expected. These observations infer that the neo-Hookean
model is not adequate to describe experimental results on shear shocks
and tensile-induced shocks in soft materials (Catheline et al., 2003;
Niemczura and Ravi-Chandar, 2011b).

The analysis of the Gent model is more complex, exhibiting richer
results. We found that the model predicts that the resultant axial and
transverse motions are coupled such that an axial (resp. transverse)
impact will also create transverse (resp. axial) displacements. Contrary
to the neo-Hookean model, the Gent model predicts that with smooth
quasi-shear waves propagate faster in sheared materials, and coalesce
into shock when the prescribed transverse impact is greater than the

initial shear state. The impact release or loading of shear may form
quasi-pressure shocks owing to the coupling between the displace-
ments, depending on initial deformation. The Gent model further pre-
dicts that the velocity of smooth quasi-pressure waves is a non-mono-
tonic function of the axial strain, and their coalescence into shock
intricately depends on the initial deformation. Notably, compressive
impact may not be sufficient to induce a quasi-pressure shock—yet it
may induce a quasi-shear shock, where tensile impact can trigger quasi-
pressure shock—and may simultaneously trigger a quasi-shear shock. In
agreement with Knowles (2002), who tackled the tensional problem
with a kinetic approach, we find that the tensile impact must be greater
than threshold value to induce shock. We characterize the dependency
of this value on the initial deformation, and specifically find that the
threshold is lower in the presence of pre-shear. These observations
imply that the Gent model is suitable for the modeling of shocks in soft
materials.

The interesting and more intricate aspects of finite amplitude wave
reflection and transition from free boundaries and material interfaces
are left for future studies (Nair and Nemat-Nasser, 1971; Agrawal and
Bhattacharya, 2014).
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Appendix A

We graphically illustrate how we obtain the values of MU and QU for two of the examples in the body of the paper. Our first example is for the
conditions =M Q M Q( , , , ) (0, 0, 0, 2.2)I I B B . Note that since the material is unstrained,M and Q are uncoupled for the quasi-pressure wave. Hence, we
know that the set of equations for smooth-smooth is not compatible, and therefore proceeded to solve the equations for shock-smooth waves. To this
end, we solve Eq. (17)1 and plot its solution in Fig. 9 (dashed brown curves). The value of = =M Q Q( 0)U U I is denoted by the diamond mark.

Our second example is for =M Q M Q( , , , ) ( 0.6, 2, 0, 1)I I B B . To solve the equations of smooth-smooth waves, we plot in Fig. 9 the numerical
solutions to Eqs. (13) and (14) for (M, Q), obtained from Wolfram Mathematica 11.3 (2018). We determine the values of (MU, QU) from the
intersection between the curves. The circle, triangle and square correspond to QB,QU and QI, respectively. Furthermore, the values QB and QU are
indicated in Fig. 4(a) by the circle and triangle marks, respectively, showing that condition (15) is satisfied for the quasi-shear wave. Similarly, the
values ofMU andMI are indicated in Fig. 5(a) by the as triangle and square marks, respectively, showing that condition (15) is satisfied for the quasi-
pressure wave.

References

Aboudi, J., Benveniste, Y., 1973. One-dimensional finite amplitude wave propagation in a
compressible elastic half-space. Int. J. Solids Struct. 9 (3), 363–378. https://doi.org/

10.1016/0020-7683(73)90086-3. ISSN 0020–7683. http://www.sciencedirect.com/
science/article/pii/0020768373900863.

Agrawal, V., Bhattacharya, K., 2014. Shock wave propagation through a model one di-
mensional heterogeneous medium. Int. J. Solids Struct. 51 (21), 3604–3618. https://
doi.org/10.1016/j.ijsolstr.2014.06.021. ISSN 0020–7683. http://www.sciencedirect.

Fig. 9. Pairs of (M Q,U U ) that solve Eq. (17)1 for the boundary values =M Q( , ) (0, 2.2)B B are denoted in brown. The value of = =M Q Q( 0)U U I is denoted by the
diamond mark. Solutions of Eqs. (13) and (14) are given by the dashed-black and solid-cyan, for =M Q M Q( , , , ) ( 0.6, 2, 0, 1)I I B B . The circle, triangle and square
correspond to Q Q,B U and Q ,I respectively.

R. Ziv and G. Shmuel 0HFKDQLFV�RI�0DWHULDOV��������������²��

��

https://doi.org/10.1016/0020-7683(73)90086-3
https://doi.org/10.1016/0020-7683(73)90086-3
http://www.sciencedirect.com/science/article/pii/0020768373900863
https://doi.org/10.1016/j.ijsolstr.2014.06.021
https://doi.org/10.1016/j.ijsolstr.2014.06.021


com/science/article/pii/S0020768314002534.
Bandyopadhyay, A., Vahabzadeh, S., Shivaram, A., Bose, S., 2015. Three-dimensional

printing of biomaterials and soft materials. MRS Bull. 40 (12), 1162–1169. https://
doi.org/10.1557/mrs.2015.274. ISSN 0883–7694.

Boulanger, P.H., Hayes, M., 1992. Finite-amplitude waves in deformed mooney-rivlin
materials. Q. J. Mech. Appl. Math. 45 (4), 575–593. https://doi.org/10.1093/
qjmam/45.4.575.

Carroll, M.M., 1967. Some results on finite amplitude elastic waves. Acta Mech. 3 (2),
167–181.

Carroll, M.M., 1974. Oscillatory shearing of nonlinearly elastic solids. Z. Angew. Math.
Phys. ZAMP 25 (1), 83–88. https://doi.org/10.1007/BF01602111. ISSN 1420–9039.

Carroll, M.M., 1978. Finite amplitude standing waves in compressible elastic solids. J.
Elast. 8 (3), 323–328. https://doi.org/10.1007/BF00130471. ISSN 1573–2681.

Catheline, S., Gennisson, J.L., Tanter, M., Fink, M., 2003. Observation of shock transverse
waves in elastic media. Phys. Rev. Lett. 91, 164301. https://doi.org/10.1103/
PhysRevLett.91.164301.

Cioroianu, A.R., Cornelis, S., 2013. Normal stresses in elastic networks. Phys. Rev. E 88,
052601. https://link.aps.org/doi/10.1103/PhysRevE.88.052601.

Davison, L., 1966. Propagation of plane waves of finite amplitude in elastic solids. J.
Mech. Phys. Solids 14 (5), 249–270. https://doi.org/10.1016/0022-5096(66)90022-
6. ISSN 0022–5096. http://www.sciencedirect.com/science/article/pii/
0022509666900226.

Davison, L., 2008. Fundamentals of Shock Wave Propagation in Solids. Springer-Verlag,
Berlin Heidelberg.

Deng, B., Raney, J.R., Tournat, V., Bertoldi, K., 2017. Elastic vector solitons in soft ar-
chitected materials. Phys. Rev. Lett. 118, 204102.

Destrade, M., Saccomandi, G., 2005. Finite amplitude elastic waves propagating in
compressible solids. Phys. Rev. E 72 (1), 16620.

Gent., A.N., 1996. A new constitutive relation for rubber. Rubber Chem. Technol. 69,
59–61.

Giammarinaro, B., Espíndola, D., Coulouvrat, F., Pinton, G., 2018. Focusing of shear
shock waves. Phys. Rev. Appl. 9, 014011. https://doi.org/10.1103/PhysRevApplied.
9.014011.

He, H., Cao, X., Dong, H., Ma, T., Payne, G.F., 2017. Reversible programing of soft matter
with reconfigurable mechanical properties. Adv. Funct. Mater. 27 (13), 1605665.
https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201605665.

Horgan, C.O., 2015. The remarkable gent constitutive model for hyperelastic materials.
Int. J. Non Linear Mech. 68, 9–16. https://doi.org/10.1016/j.ijnonlinmec.2014.05.
010. ISSN 0020–7462. http://www.sciencedirect.com/science/article/pii/
S0020746214001127.

Horgan, C.O., Murphy, J.G., 2017. Poynting and reverse poynting effects in soft materials.
Soft Matter 13, 4916–4923. https://doi.org/10.1039/C7SM00992E.

Jacob, X., Catheline, S., Gennisson, J.-L., Barrière, C., Royer, D., Fink, M., 2007. Nonlinear
shear wave interaction in soft solids. J. Acoust. Soc. Am. 122 (4), 1917–1926. https://
doi.org/10.1121/1.2775871.

Kim, J., Kim, C., Song, Y., Jeong, S.-G., Kim, T.-S., Lee, C.-S., 2017. Reversible self-
bending soft hydrogel microstructures with mechanically optimized designs. Chem.
Eng. J. 321, 384–393. https://doi.org/10.1016/j.cej.2017.03.125. ISSN 1385–8947.
http://www.sciencedirect.com/science/article/pii/S1385894717304928.

Knowles, J.K., 2002. Impact-induced tensile waves in a rubberlike material. SIAM J. Appl.
Math. 62 (4), 1153–1175.

Kolsky, H., 1969. Production of tensile shock waves in stretched natural rubber. Nature
224 (5226), 1301.

Lints, M., Santos, S.D., Salupere, A., 2017. Solitary waves for non-destructive testing

applications: delayed nonlinear time reversal signal processing optimization. Wave
Motion 71, 101–112. https://doi.org/10.1016/j.wavemoti.2016.07.001. ISSN
0165–2125. http://www.sciencedirect.com/science/article/pii/
S0165212516300701. Mathematical Modeling and Physical Dynamics of Solitary
Waves: From Continuum Mechanics to Field Theory.

Lopez-Pamies, O., Castañeda, P.P., 2007. Homogenization-based constitutive models for
porous elastomers and implications for macroscopic instabilities: ii—results. J. Mech.
Phys. Solids 55 (8), 1702–1728. https://doi.org/10.1016/j.jmps.2007.01.008. ISSN
0022–5096. http://www.sciencedirect.com/science/article/pii/
S0022509607000269.

Lustig, B., Shmuel, G., 2018. On the band gap universality of multiphase laminates and its
applications. J. Mech. Phys. Solids 117, 37–53. https://doi.org/10.1016/j.jmps.2018.
04.008. ISSN 0022–5096. http://www.sciencedirect.com/science/article/pii/
S0022509618302321.

Nadkarni, N., Daraio, C., Kochmann, D.M., 2014. Dynamics of periodic mechanical
structures containing bistable elastic elements: from elastic to solitary wave propa-
gation. Phys. Rev. E 90 (2), 23204. https://doi.org/10.1103/PhysRevE.90.023204.
http://link.aps.org/doi/10.1103/PhysRevE.90.023204.

Nair, S., Nemat-Nasser, S., 1971. On finite amplitude waves in heterogeneous elastic
solids. Int. J. Eng. Sci. 9 (11), 1087–1105.

Niemczura, J., Ravi-Chandar, K., 2011a. On the response of rubbers at high strain
rates—i. Simple waves. J. Mech. Phys. Solids 59 (2), 423–441. https://doi.org/10.
1016/j.jmps.2007.01.008. ISSN 0022–5096. http://www.sciencedirect.com/science/
article/pii/S0022509610001821.

Niemczura, J., Ravi-Chandar, K., 2011b. On the response of rubbers at high strain
rates—II. Shock waves. J. Mech. Phys. Solids 59 (2), 442–456. https://doi.org/10.
1016/j.jmps.2010.09.007. ISSN 0022–5096. http://www.sciencedirect.com/science/
article/pii/S0022509610001833.

Puglisi, G., Saccomandi, G., 2015. The gent model for rubber-like materials: an appraisal
for an ingenious and simple idea. Int. J. Non Linear Mech. 68, 17–24. https://doi.org/
10.1016/j.ijnonlinmec.2014.05.007. ISSN 0020–7462. http://www.sciencedirect.
com/science/article/pii/S0020746214001097.

Rajagopal, K.R., 1998. On a class of elastodynamic motions in a neo-Hookean elastic
solid. Int. J. Non Linear Mech. 33 (3), 397–405. https://doi.org/10.1016/S0020-
7462(97)00032-2. ISSN 0020–7462. http://www.sciencedirect.com/science/article/
pii/S0020746297000322.

Raney, J., Nadkarni, N., Daraio, C., Kochmann, D.M., Lewis, J.A., Bertoldi, K., 2016.
Stable propagation of mechanical signals in soft media using stored elastic energy.
Proc. Natl. Acad. Sci. USA.

Scheidler, M., 2000. Universal relations for pressure-shear waves in nonlinear elastic
solids. AIP Conf. Proc. 505 (1), 181–184. https://doi.org/10.1063/1.1303451.
https://aip.scitation.org/doi/abs/10.1063/1.1303451.

Shmuel, G., Band, R., 2016. Universality of the frequency spectrum of laminates. J. Mech.
Phys. Solids 92, 127–136. https://doi.org/10.1016/j.jmps.2016.04.001. ISSN
0022–5096.

Truby, R.L., Lewis, J.A., 2016. Printing soft matter in three dimensions. Nature 540,
371–378.

Wolfram, 2018. Research, inc. mathematica, version 11.3. champaign, IL.
Xin, F., Lu, T., 2016. Tensional acoustomechanical soft metamaterials. Sci. Rep. 6

(27432). EP –, 06 https://doi.org/10.1038/srep27432.
Yongchi, L., Ting, T.C.T., 1983. Plane waves in simple elastic solids and discontinuous

dependence of solution on boundary conditions. Int. J. Solids Struct. 19 (11),
989–1008. https://doi.org/10.1016/0020-7683(83)90024-0. ISSN 0020–7683.
http://www.sciencedirect.com/science/article/pii/0020768383900240.

R. Ziv and G. Shmuel 0HFKDQLFV�RI�0DWHULDOV��������������²��

��

http://www.sciencedirect.com/science/article/pii/S0020768314002534
https://doi.org/10.1557/mrs.2015.274
https://doi.org/10.1557/mrs.2015.274
https://doi.org/10.1093/qjmam/45.4.575
https://doi.org/10.1093/qjmam/45.4.575
http://refhub.elsevier.com/S0167-6636(19)30002-X/sbref0005
http://refhub.elsevier.com/S0167-6636(19)30002-X/sbref0005
https://doi.org/10.1007/BF01602111
https://doi.org/10.1007/BF00130471
https://doi.org/10.1103/PhysRevLett.91.164301
https://doi.org/10.1103/PhysRevLett.91.164301
http://refhub.elsevier.com/S0167-6636(19)30002-X/sbref0009
http://refhub.elsevier.com/S0167-6636(19)30002-X/sbref0009
https://doi.org/10.1016/0022-5096(66)90022-6
https://doi.org/10.1016/0022-5096(66)90022-6
http://www.sciencedirect.com/science/article/pii/0022509666900226
http://refhub.elsevier.com/S0167-6636(19)30002-X/sbref0022
http://refhub.elsevier.com/S0167-6636(19)30002-X/sbref0022
http://refhub.elsevier.com/S0167-6636(19)30002-X/sbref0012
http://refhub.elsevier.com/S0167-6636(19)30002-X/sbref0012
http://refhub.elsevier.com/S0167-6636(19)30002-X/sbref0013
http://refhub.elsevier.com/S0167-6636(19)30002-X/sbref0013
http://refhub.elsevier.com/S0167-6636(19)30002-X/sbref0014
http://refhub.elsevier.com/S0167-6636(19)30002-X/sbref0014
https://doi.org/10.1103/PhysRevApplied.9.014011
https://doi.org/10.1103/PhysRevApplied.9.014011
http://refhub.elsevier.com/S0167-6636(19)30002-X/sbref0016
http://refhub.elsevier.com/S0167-6636(19)30002-X/sbref0016
https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201605665
https://doi.org/10.1016/j.ijnonlinmec.2014.05.010
https://doi.org/10.1016/j.ijnonlinmec.2014.05.010
http://www.sciencedirect.com/science/article/pii/S0020746214001127
http://refhub.elsevier.com/S0167-6636(19)30002-X/sbref0017
http://refhub.elsevier.com/S0167-6636(19)30002-X/sbref0017
https://doi.org/10.1121/1.2775871
https://doi.org/10.1121/1.2775871
https://doi.org/10.1016/j.cej.2017.03.125
http://www.sciencedirect.com/science/article/pii/S1385894717304928
http://refhub.elsevier.com/S0167-6636(19)30002-X/sbref0020
http://refhub.elsevier.com/S0167-6636(19)30002-X/sbref0020
http://refhub.elsevier.com/S0167-6636(19)30002-X/sbref0021
http://refhub.elsevier.com/S0167-6636(19)30002-X/sbref0021
https://doi.org/10.1016/j.wavemoti.2016.07.001
https://doi.org/10.1016/j.wavemoti.2016.07.001
http://www.sciencedirect.com/science/article/pii/S0165212516300701
https://doi.org/10.1016/j.wavemoti.2016.07.001
https://doi.org/10.1016/j.jmps.2007.01.008
https://doi.org/10.1016/j.jmps.2007.01.008
http://www.sciencedirect.com/science/article/pii/S0022509607000269
https://doi.org/10.1016/j.jmps.2018.04.008
https://doi.org/10.1016/j.jmps.2018.04.008
http://www.sciencedirect.com/science/article/pii/S0022509618302321
https://doi.org/10.1103/PhysRevE.90.023204
http://link.aps.org/doi/10.1103/PhysRevE.90.023204
http://refhub.elsevier.com/S0167-6636(19)30002-X/sbref0027
http://refhub.elsevier.com/S0167-6636(19)30002-X/sbref0027
https://doi.org/10.1016/j.jmps.2007.01.008
https://doi.org/10.1016/j.jmps.2007.01.008
http://www.sciencedirect.com/science/article/pii/S0022509610001821
https://doi.org/10.1016/j.jmps.2010.09.007
https://doi.org/10.1016/j.jmps.2010.09.007
http://www.sciencedirect.com/science/article/pii/S0022509610001833
https://doi.org/10.1016/j.ijnonlinmec.2014.05.007
https://doi.org/10.1016/j.ijnonlinmec.2014.05.007
http://www.sciencedirect.com/science/article/pii/S0020746214001097
https://doi.org/10.1016/S0020-7462(97)00032-2
https://doi.org/10.1016/S0020-7462(97)00032-2
http://www.sciencedirect.com/science/article/pii/S0020746297000322
http://refhub.elsevier.com/S0167-6636(19)30002-X/sbref0032
http://refhub.elsevier.com/S0167-6636(19)30002-X/sbref0032
http://refhub.elsevier.com/S0167-6636(19)30002-X/sbref0032
https://doi.org/10.1063/1.1303451
https://aip.scitation.org/doi/abs/10.1063/1.1303451
https://doi.org/10.1016/j.jmps.2016.04.001
https://doi.org/10.1016/j.jmps.2016.04.001
http://refhub.elsevier.com/S0167-6636(19)30002-X/sbref0035
http://refhub.elsevier.com/S0167-6636(19)30002-X/sbref0035
http://refhub.elsevier.com/S0167-6636(19)30002-X/sbref0036
http://refhub.elsevier.com/S0167-6636(19)30002-X/sbref0036
https://doi.org/10.1016/0020-7683(83)90024-0
http://www.sciencedirect.com/science/article/pii/0020768383900240

	Smooth waves and shocks of finite amplitude in soft materials
	Introduction
	Problem statement and method of solution
	Smooth and acceleration wave solutions
	Shock wave solutions

	Analysis of compressible neo-Hookean materials
	Analysis of compressible Gent materials
	Combined shear and axial impact of unstrained materials
	Combined shear and axial impact of finitely strained materials
	Summary
	Acknowledgments
	Appendix A
	References


