On the universality of the frequency spectrum and band-gap optimization of quasicrystalline-generated structured rods

Lorenzo Morini¹, Zafar Gokay Tetik¹, Gal Shmuel² and Massimiliano Gei¹

¹School of Engineering, Cardiff University, The Parade, Cardiff CF24 3AA, Wales, UK
²Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel

The dynamical properties of periodic two-component phononic rods, whose elementary cells are generated adopting the Fibonacci substitution rules, are studied through the recently introduced method of the toroidal manifold. The method allows all band gaps and pass bands featuring the frequency spectrum to be represented in a compact form with a frequency-dependent flow line on the surface describing their ordered sequence. The flow lines on the torus can be either closed or open: in the former case, (i) the frequency spectrum is periodic and the elementary cell corresponds to a canonical configuration, (ii) the band gap density depends on the lengths of the two phases; in the latter, the flow lines cover ergodically the torus and the band gap density is independent of those lengths. It is then shown how the proposed compact description of the spectrum can be exploited (i) to find the widest band gap for a given configuration and (ii) to optimize the layout of the elementary cell in order to maximize the low-frequency band gap. The scaling property of the frequency spectrum, that is a distinctive feature of quasicrystalline-generated phononic media, is also confirmed by inspecting band-gap/pass-band regions on the torus for the elementary cells of different Fibonacci orders.
This article is part of the theme issue ‘Modelling of dynamic phenomena and localization in structured media (part 2)’.

1. Introduction

In the last 50 years, the investigation of wave propagation in structured media and their applications in different areas of engineering have attracted significant interest from the scientific community. In this context, the contribution of Prof. Slepyan and his collaborators was essential for understanding and predicting several phenomena, in particular, transition waves in periodic and bistable structures [1–4], interaction between surface modes and fractures [5,6], dissipation and phase transition in lattice materials [7–9] and solitary nonlinear waves [10,11]. These fundamental studies, together with the results obtained by other authors [12–15], have inspired a very active field of research, concerning the design of phononic structures with the aim of achieving and controlling non-standard wave propagation phenomena, such as wave focusing [16], frequency filtering [17], cloaking [18,19] and negative refraction [20,21]. Recently, the intriguing dynamical properties of a class of two-phase periodic structured solids, whose unit cells are generated according to the Fibonacci substitution rule, have been presented [22,23]. This particular family of composite structures belongs to the subset of quasicrystalline media [24] and the portion of Floquet–Bloch frequency spectra of its members are characterized by a self-similar pattern which scales according to the factors linked to the Kohmoto’s invariant of the family itself [25].

This work provides new insights on the relationship between the geometrical and constitutive properties of the elementary cells and the layout of pass bands/band gaps for the same type of quasicrystalline-generated phononic rods. By considering harmonic axial waves, we show that the corresponding frequency spectrum can be represented on a two-dimensional toroidal manifold similar to that introduced in [26,27] to study Floquet–Bloch waves in periodic laminates. This manifold is universal for all two-phase configurations and the dispersion properties of the concerned rod can be inferred from the features of the frequency-parametrized flow lines lying on the toroidal domain, which is composed of band gap and pass-band regions. We identify a particular subclass of rods whose flow lines on the torus are closed, thus describing a periodicity in the spectrum at an increasing frequency, and show that the subclass coincides with that of the so-called canonical structures introduced by Morini and Gei [23]. The local scaling governing the pass band/band gap layout about certain relevant frequencies (i.e. the canonical frequencies) is confirmed and highlighted through the analysis of the flow lines on the torus.

The universal representation of the spectrum on the toroidal surface allows us to rigorously estimate the band gap density for rods of any arbitrary Fibonacci elementary cell. We find that for canonical configurations, this quantity varies with the ratio between the lengths of the phases, corresponding to the slope of the flow lines. Conversely, for generic non-canonical rods, the band gap density is independent of the lengths of the cells and is defined by the ratio between the area of the band gap subdomain and the total surface of the torus [28–30]. The provided examples show that this ratio can be easily evaluated numerically.

We further demonstrate how the compact representation of the spectrum on the two-dimensional torus can be exploited to either optimize the design of the elementary cells to achieve the widest low-frequency band gap or to determine rigorously where the maximal band gap is located in the spectrum for a given configuration. In the examples that we report, we have based this investigation on analytical expressions of the boundaries of band gap regions that can be easily obtained for low-order elementary cells. Unlike the standard procedure based on partial evaluation of the spectrum [31–33], the proposed optimization strategy provides exact rigorous results, and it can be easily generalized to Fibonacci cells of higher order.
elementary cell

Figure 1. Elementary cells for infinite Fibonacci rods based on $F_2 = LS$, $F_3 = LSL$ and $F_4 = LSLLS$. Symbols r and l denote right-hand and left-hand boundaries of the cell, respectively.

2. Waves in quasicrystalline-generated phononic rods

We introduce a particular class of infinite, one-dimensional, two-component phononic rods consisting of a repeated elementary cell where two distinct elements, say L and S, are arranged in series according to the Fibonacci sequence [24]. The repetition of such a cell implies periodicity along the axis and then the possibility of applying the Floquet–Bloch technique in order to study harmonic wave propagation. The two-component Fibonacci sequence is based on the following substitution rule [34]

$$L \rightarrow LS \quad \text{and} \quad S \rightarrow L.$$ \hspace{1cm} (2.1)

Expression (2.1) implies that the ith ($i = 0, 1, 2, \ldots$) element of the Fibonacci sequence, here denoted by F_i, obeys the recursive rule $F_i = F_{i-1}F_{i-2}$, where the initial conditions are $F_0 = S$ and $F_1 = L$ (in figure 1, elementary cells designed according to sequences F_2, F_3 and F_4 are displayed).

The total number of elements of F_i corresponds to the Fibonacci number \tilde{n}_i given by the recurrence relation

$$\tilde{n}_i = \tilde{n}_{i-1} + \tilde{n}_{i-2},$$

with $i \geq 2$, and $\tilde{n}_0 = \tilde{n}_1 = 1$. The limit of $\tilde{n}_{i+1}/\tilde{n}_i$ for $i \to \infty$ corresponds to the so-called golden mean ratio $(1 + \sqrt{5})/2$.

Further in the text, we will refer to those structured rods as Fibonacci structures. According to the general criterion for the classification of the one-dimensional quasiperiodic patterns proposed in [35], these structures are quasicrystalline. Quasicrystalline media possess characteristic features that make them an intermediate class between periodic ordered crystals and random media [36,37]. An example of these interesting and intriguing properties is the self-similarity of the frequency spectrum [23]. The focus of this paper is on the analysis of the universal structure of this spectrum and on its application to predict, modulate and optimize the corresponding stop/pass band layout. We will show that the universality of the spectrum is closely related to the properties of the Floquet–Bloch dispersion relation exploited in [22] and summarized in this Section.

Let us introduce the mechanical and geometric parameters of elements L and S. The lengths of the two phases are indicated with l_L and l_S, while A_X, E_X and ϱ_X ($X \in \{L, S\}$) denote cross-section area of each bar, Young’s modulus and mass density per unit volume of the two adopted materials. For both elements, we define the displacement function and the axial force along the rod as $u(z)$ and $N(z) = E_A u'(z)$, respectively, where z is the coordinate describing the longitudinal axis. The governing equation of harmonic waves in each section assumes the form

$$u''_X(z) + \frac{\varrho_X}{E_X} \omega^2 u_X(z) = 0,$$ \hspace{1cm} (2.2)

Henceforth, the notation F_i will indicate both the sequence and the elementary cell of the structured rod.
where $\omega \in \mathbb{R}^+$ is the circular frequency (simply the ‘frequency’ in the following) and the term $\varrho X / E_X$ corresponds to the reciprocal of the square of the speed of propagation of longitudinal waves in material X. The solution of (2.2) is given by

$$u_X(z) = C_1^X \sin \left(\sqrt{\frac{\varrho X}{E_X}} \omega z \right) + C_2^X \cos \left(\sqrt{\frac{\varrho X}{E_X}} \omega z \right), \quad (2.3)$$

where C_1^X and C_2^X are integration constants, to be determined by the boundary conditions.

To obtain the dispersion diagram of the periodic rod, displacement u_r and axial force N_l at the right-hand boundary of the elementary cell have to be given in terms of those at the left-hand boundary, namely u_l and N_l (figure 1), as

$$U_r = T_i U_r,$$

$$(2.4)$$

$$\text{where } U_i = [u_j N_r]^T \quad (j = r, l) \text{ and } T_i \text{ is a transfer (or transmission) matrix of the cell } \mathcal{F}_i. \text{ This matrix is the result of the product } T_i = \prod_{p=1}^{N_l} T^X, \text{ where } T^X (X \in \{L, S\}) \text{ is the transfer matrix, which relates quantities across a single element, given by}$$

$$T^X = \begin{bmatrix}
\cos \left(\frac{\varrho X}{E_X} ol_X \right) & \sin \left(\frac{\varrho X}{E_X} ol_X \right) \\
-\varrho X A_X \sqrt{\frac{\varrho X}{E_X} \omega} \sin \left(\frac{\varrho X}{E_X} ol_X \right) & \cos \left(\frac{\varrho X}{E_X} ol_X \right)
\end{bmatrix}. \quad (2.5)$$

Transfer matrices T_i have some important properties that can be exploited: (i) they are unimodular, i.e. $\det T_i = 1$, and (ii) follow the recursion rule

$$T_{i+1} = T_{i-1} T_i,$$

$$(2.6)$$

with $T_0 = T^S$ and $T_1 = T^L$.

The Floquet–Bloch theorem implies that $U_i = \exp(ikL_i) U_i$, where L_i is the total length of the fundamental cell \mathcal{F}_i and the imaginary unit appearing in the argument of the exponential function should not be confused with the index i. By combining this condition with (2.4), we obtain the dispersion equation

$$\det[T_i - e^{ikL_i}I] = 0. \quad (2.7)$$

The solution of equation (2.7) provides the complete Floquet–Bloch spectrum and allows us to obtain the location of band gaps and pass bands associated with the infinite rods here considered.

Equivalently, we can study the dispersion properties of these structures by evaluating the eigenvalues of the transfer matrix. As T_i is unimodular, it turns out that the characteristic equation of the waveguide is given by

$$\det[T_i - \lambda I] = 0 \Rightarrow \lambda^2 - \lambda \text{ tr } T_i + 1 = 0. \quad (2.8)$$

By substituting $e^{ikL_i} = \lambda$ in equation (2.8) and multiplying it by e^{-ikL_i}, the condition $e^{ikL_i} + e^{-ikL_i} - \text{ tr } T_i = 0$ is achieved, leading to

$$\eta_i = \cos k L_i, \quad (2.9)$$

where $\eta_i = \text{ tr } T_i / 2$.

By observing equation (2.9), we can easily deduce that all the information concerning harmonic axial wave propagation in a Fibonacci structure is contained in the half trace η_i of the corresponding transfer matrix. Waves propagate when $|\eta_i| < 1 \quad (k L_i \in \mathbb{R} \backslash \{x \in \mathbb{R} : h \in \mathbb{Z}\})$, band gaps correspond to the ranges of frequencies where $|\eta_i| > 1 \quad (k \text{ is a complex number with a non-vanishing imaginary part})$, whereas $|\eta_i| = 1$ characterizes standing waves ($k L_i \in \{x \in \mathbb{R} : h \in \mathbb{Z}\}$).

We note that both the transfer matrix (2.5) and the dispersion relation (2.9) possess a form identical to that derived in [38,39] and used in [26,27,40] to study antiplane shear waves in periodic two-phase, multiphase and quasicrystalline laminates, respectively. Further in the paper,
we will exploit this mathematical analogy generalizing the approach proposed in [26] to study the universal structure of the frequency spectrum of Fibonacci phononic rods.

3. Universal structure of the frequency spectrum

The analysis of the universal structure of the frequency spectrum will take advantage of the introduction of the following variables [26,28–30]:

$$\xi_X = \frac{\partial X}{E_X} \omega l_X \quad (X \in \{L, S\}). \quad (3.1)$$

The unimodularity property of T_γ together with the relationship (2.6), implies the following recursive rule for the half trace η_{i+1} [23]:

$$\eta_{i+1} = 2\eta_i \eta_{i-1} - \eta_{i-2} \quad \text{with} \ i \geq 2, \quad (3.2)$$

where the initial conditions are

$$\eta_0(\xi_S) = \cos \xi_S, \quad \eta_1(\xi_L) = \cos \xi_L, \quad \eta_2(\xi_S, \xi_L; \gamma) = \cos \xi_S \cos \xi_L - \gamma \sin \xi_S \sin \xi_L. \quad (3.3)$$

The quantity

$$\gamma = \frac{1}{2} \left(\frac{A_L E_L}{A_S E_S} \frac{\partial L E_S}{\partial S E_L} + \frac{A_S E_S}{A_L E_L} \frac{\partial S E_L}{\partial L E_S} \right) \quad (3.4)$$

quantifies the impedance mismatch between the phases L and S, and it depends on their constitutive parameters but not on lengths of the single elements L and S. When $\gamma = 1$ there is no contrast between phases and the waveguide behaves as a homogeneous one. Expressions (3.3) show that for any given value of γ, η_0, η_1 and η_2 are 2π-periodic functions of ξ_S and ξ_L. The generic half trace η_i can be derived by means of successive iterations of the recursive formula (3.2) by assuming (3.3) as initial conditions. Therefore, at any order i, η_i is also a 2π-periodic function, separately, of ξ_S and ξ_L as it is defined through sums and products of functions with the same period. This implies that we can consider the half trace η_i as a function of a two-dimensional torus of edge length 2π, whose toroidal and poloidal coordinates are ξ_S and ξ_L, respectively. This function is independent of the lengths of the two phases L and S. The toroidal domain is composed of two complementary subspaces that are associated with the two inequalities introduced earlier in the discussion after equation (2.9), namely $|\eta_i(\xi_S, \xi_L)| < 1$ identifies a pass-band subdomain, whereas $|\eta_i(\xi_S, \xi_L)| > 1$ corresponds to a band-gap one. The two regions might not be simply connected and the collection of lines of separation between the two subdomains, in which $|\eta_i(\xi_S, \xi_L)| = 1$, denotes a standing wave solution. The measures of the two regions are univocally determined by the value of the parameter γ.

A sketch of the toroidal domains for cells F_2 and F_3 is displayed in figure 2a,b where the set of physical properties tabled in table 1 have been assumed (for that choice, $\gamma \approx 2.125$). In both plots, the pink zone corresponds to the pass-band region, whereas the band-gap one is painted in grey.

Equation (2.9) shows that $|\eta_i(\xi_S, \xi_L)|$ is invariant under the transformation

$$\xi_S \rightarrow \xi_S + n\pi, \quad \xi_L \rightarrow \xi_L + m\pi \quad (n, m \in \mathbb{N}), \quad (3.5)$$

so that, as pointed out in [26], the map on the torus can be equivalently represented on a reduced π-periodic torus. The latter can be conveniently represented through the so-called square identification [41], in which the curved domain is flattened and transformed to a square whose edges are still described by coordinates ξ_S and ξ_L, both ranging now between 0 and π. In the new square representation, the band-gap subdomain ($|\eta_i(\xi_S, \xi_L)| > 1$) is denoted by $\mathbb{D}_i(\gamma)$. In the following, the square equivalent π-periodic torus with the domain $\mathbb{D}_i(\gamma)$ will be indicated with T_i. At times, we will also refer to it as the ‘reduced torus’ for the cell F_i.

In figure 2c,d, the reduced tori T_2 and T_3 are reported. The light blue, light red and light brown regions in both plots denote the subdomains $\mathbb{D}_2(\gamma)$ and $\mathbb{D}_3(\gamma)$ determined for $\gamma \approx 8.031, 2.125$ and 1.170, respectively. In particular, the light red ones are the representation of the band gap domains
Figure 2. (a,b) Toroidal domains of edge length 2π for Fibonacci cells F_2 (a) and F_3 (b) with $\gamma \approx 2.125$. The pass-band regions where $|\eta_2| < 1$ and $|\eta_3| < 1$ are depicted in pink. The band-gap ones ($|\eta_2| > 1$ and $|\eta_3| > 1$) are highlighted in grey. An example of a periodic, closed flow line is reported in blue in each panel. (c,d) Square identification of the π-periodic torus for cells F_2 and F_3; light blue, light red and light brown regions correspond to the subdomains $D_2(\gamma)$ and $D_3(\gamma)$ defined for $\gamma \approx 8.031$ ($A_S/A_L = 0.0625$), 2.125 ($A_S/A_L = 0.25$) and 1.170 ($A_S/A_L = 0.5625$), respectively. Red dots denote the intersection of the flow lines with the boundary of D_i for the case $\gamma \approx 2.125$. (e,f) Dispersion diagrams for Fibonacci cells F_2 (e) and F_3 (f) with $\gamma \approx 2.125$ ($A_S/A_L = 0.25$) and values of other the mechanical and geometrical parameters reported in table 1. (Online version in colour.)
The spectrum for a Fibonacci rod of any arbitrary order can, therefore, be studied by analysing the dynamic flow parametrized \(\xi(\omega) = (\xi_S(\omega), \xi_L(\omega)) \) on the corresponding reduced torus, where the frequency \(\omega \) plays the role of a time-like parameter. This flow is the image on \(T_i \) of the trajectories described by the angles \(\xi_S \) and \(\xi_L \) on the original torus. Two examples of the latter are the blue lines reported in figure 2a,b. In order to represent these flow lines on \(T_i \), we interpret expression (3.1) as the equation of a rectilinear trajectory lying on the square. Now, for any arbitrary Fibonacci cell \(F_i \) for which a specific indication for lengths \(l_S \) and \(l_S \) is provided, we can depict the trajectory (3.1) on \(T_i \) as those illustrated for \(F_2 \) and \(F_3 \) in the two plots of figure 2c,d. For this purpose, if we consider values of the frequency such that \(\sqrt{\omega_X/\omega_S} \omega_X > \pi \), by recalling the invariance of \(T_i \) and of its subdomain \(D_\gamma(\gamma) \) with respect to transformations (3.5), expression (3.1) can be written in the transformed form as

\[
\xi_S(\omega) = \frac{\omega_S}{\omega_S} \omega_S l_S - n \pi \quad \text{and} \quad \xi_L(\omega) = \frac{\omega_L}{\omega_L} \omega_L l_L - m \pi \quad (n, m \in \mathbb{N}). \tag{3.6}
\]

Consequently, the trajectory (3.1) reported on \(T_i \) appears as a set of parallel segments as those reported in blue in figure 2c,d, and the flow \(\xi(\omega) \) can be expressed as

\[
\xi(\omega) = \omega \left(\sqrt{\omega_S/E_S} l_S, \sqrt{\omega_L/E_L} l_L \right) \mod \pi. \tag{3.7}
\]

The segments shown in figure 2c,d are the images of the flow lines illustrated in figure 2a,b, respectively. By examining these lines, we can easily observe that they trace a closed trajectory on the torus. In the next section, the class of structures, whose spectra are described by this particular type of flow lines, is defined and characterized in detail.

The values of \(\omega \), for which the lines of the flow (3.7) intersect the boundary of the subdomain \(D_\gamma(\gamma) \), coincide with the extremes of the band gaps. These intersections are highlighted with red points in figure 2c,d for waveguides generated by \(F_2 \) and \(F_3 \) for \(\gamma \approx 2.125 \). The same band gaps are illustrated in the classical dispersion diagrams of figure 2e,f.

A parametric equation for the flow lines on \(T_i \) is easily derived from equation (3.6)

\[
\xi_L(\omega) = \alpha + \beta \xi_S(\omega), \tag{3.8}
\]

where

\[
\alpha = \pi (\beta n - m), \tag{3.9}
\]

and the angular coefficient

\[
\beta = \frac{\sqrt{\omega_L/E_L} l_L}{\sqrt{\omega_S/E_S} l_S} \tag{3.10}
\]

defines the direction of the flow (i.e. the slope of the blue segments shown in figure 2c,d). In particular, the segment emerging from the origin for \(\omega = 0^+ \) (i.e. \(m = n = 0 \)) has equation \(\xi_L(\omega) = \beta \xi_S(\omega) \). In the next section, we discuss how rational and irrational values of ratio (3.10) are associated with Fibonacci rods possessing periodic and non-periodic spectra, respectively, corresponding to closed and open trajectories on the \(2\pi \)-periodic torus, respectively. Both these two different behaviours are studied by analysing the flow lines on \(T_i \). Relevant indications concerning the band gap density and the different properties of rods with periodic and non-periodic spectra are obtained by using this universal approach.

Table 1. Mechanical and geometrical parameters adopted in the numerical calculations.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_s)</td>
<td>3.3 GPa</td>
</tr>
<tr>
<td>(\rho_s)</td>
<td>1140 kg m(^{-3})</td>
</tr>
<tr>
<td>(A_t)</td>
<td>4A_s = 1.963 \times 10^{-3} m^2</td>
</tr>
<tr>
<td>(l_t)</td>
<td>0.07 m</td>
</tr>
</tbody>
</table>
4. Analysis of the flow lines on the reduced torus

Let us analyse the different types of trajectories (lines) that can describe the flow $\xi(\omega)$ on the torus. The condition for closed periodic lines is the existence of a frequency interval Ω such that \[\xi_S(\omega + \Omega) = \xi_S(\omega) + 2\pi j \quad \text{and} \quad \xi_L(\omega + \Omega) = \xi_L(\omega) + 2\pi q \quad (j, q \in \mathbb{N}). \tag{4.1} \]

By combining expressions (4.1) with equation (3.1), we derive the relationships
\[\sqrt{\frac{\omega_S}{E_S}} l_S = \frac{2\pi j}{\Omega} \quad \text{and} \quad \sqrt{\frac{\omega_L}{E_L}} l_L = \frac{2\pi q}{\Omega}, \tag{4.2} \]
and then the ratio
\[\beta = \frac{q}{j}. \tag{4.3} \]

We can deduce from expression (4.3) that the trajectories on the torus are periodic if the ratio β is a rational number. This condition is exactly the same as that introduced in [23] and necessary to realize Fibonacci structures with a periodic spectrum, which are called in that article canonical structures. Therefore, canonical configurations correspond to closed flow trajectories on the torus. Considering the original 2π-periodic torus, these are closed helicoidal orbits on the surface as those reported in figure 2a,b. The two whole numbers j and q represent the number of cycles, namely 2π rotations, about the toroidal and poloidal axes. As an example, both blue trajectories of figure 2a,b correspond to $j = 1$ and $q = 2$ and then to $\beta = 2$. On \mathbb{T}_i, the closed flow lines associated with canonical structures become a finite number of parallel segments. The periodicity of the dispersion diagram is verified in figure 2ef where the band gap limits already highlighted in the companion graphs plotted above (i.e. (c) and (d), respectively) are marked with red points.

In figures 3, 4 and 5, examples of periodic flow lines for canonical structures generated by the repetition of cells F_2, F_3 and F_4 are reported. For the calculations, we considered two phases S and L of the same material ($E_S = E_L$ and $\varrho_S = \varrho_L$, see table 1) so that parameters γ and β become
\[\gamma = \frac{1}{2} \left(\frac{A_S}{A_L} + \frac{A_L}{A_S} \right) \quad \text{and} \quad \beta = \frac{l_L}{l_S}. \tag{4.4} \]

As a consequence, the areas of subdomains D_i^2 depend only on ratio A_S/A_L, while the direction of flow is defined by l_S/l_L. Moreover, according to the classification provided in [23], the analysed rods belong to the second family of canonical configurations.

In the plots on the left-hand side of each of figures 3–5, diagrams are presented of the half traces η_2, η_3, η_4 reported as functions of ω for an interval of frequencies which coincides with the half period of the spectrum. We use coloured dots to earmark the extremes of the intervals where $|\eta_2|$, $|\eta_3|$, $|\eta_4| > 1$, defining the band gaps. The flow lines on \mathbb{T}_2, \mathbb{T}_3 and \mathbb{T}_4 are reported on the right-hand side of each figure. Their intersection with the boundaries of \mathbb{D}_2, \mathbb{D}_3 and \mathbb{D}_4, which identify the extreme of the band gaps, are indicated with the same coloured dots. We used the same colour cod in both diagrams of traces and \mathbb{T}_i in order to associate the corresponding band gap in the two different representations. We note that the flow diagrams in \mathbb{T}_i highlight all the band gaps contained in the half period of the canonical structures, and then the successive band gaps can be visualized using the same finite number of segments on \mathbb{T}_i and applying the transformation (3.6). Therefore, for canonical structures generated by any arbitrary cell F_i, the band gap density φ_i is given by the ratio between the measure of the intersections between the flow lines and the subdomain D_i, and the total length of the flow lines. The latter is given by the sum of all the parallel segments reported in figures 3–5 and corresponding to $\sqrt{j^2 + q^2 \pi}$. This ratio depends on both the area of D_i and the direction of the flow lines, and then on both γ and β parameters.

The values of the band gap density for three different examples of canonical structures with elementary cells from F_2 to F_8 are reported in figure 6. We assumed the same constitutive properties used for the results shown in figures 3–5 (table 1) and three different ratios l_S/l_L, which,
Figure 3. Half-trace function (a) and flow lines on diagram T_2 (b) for a F_2 canonical Fibonacci rod characterized by the parameters listed in table 1 and $l_S/l_L = 1/2 (\gamma \approx 2.125, \beta = 2)$. Coloured dots in both panels mark the extremes of the band gaps. (Online version in colour.)

Figure 4. Half-trace function (a) and flow lines on diagram T_2 (b) for a F_3 canonical Fibonacci rod characterized by the parameters listed in table 1 and $l_S/l_L = 1/2 (\gamma \approx 2.125, \beta = 2)$. Coloured dots in both panels mark the extremes of the band gaps. (Online version in colour.)

in this particular case, correspond to three values of β, namely 1, 2 and 7/2 (see equation (4.4)2). According to the definition provided in [23], those three ratios are associated with canonical structures which belong to the first, the second and the third family. The three families are distinguished by different stop and pass band layouts, but they all possess periodic spectra with properties depending exclusively on β. Figure 6 shows that the value of the band gap density is different for cells of the same order i, but with distinct values of the parameter β. This confirms, as we have already mentioned, that the band gap density of canonical rods depends on the ratio l_S/l_L. As a consequence, if we assume given constitutive properties of the phases S and L (i.e. E_S, E_L, ρ_S and ρ_L) and given cross-sections A_L and A_S, and then we determine univocally the domain T_i and the area of the subspace D_i, we can modulate the band gap density by simply varying the ratio l_S/l_L. Indeed, by changing this parameter, we assign a different direction to the flow lines on the torus or equivalently to the slope of the segments on the square identification of T_i, determining the band gap intervals which coincide with intersections of the flow trajectories with the subdomain D_i.
Figure 5. Half-trace function (a) and flow lines on diagram T_2 (b) for a F_4 canonical Fibonacci rod characterized by the parameters listed in table 1 and $l_S/l_L = 1/2$ ($\gamma \approx 2.125, \beta = 2$). Coloured dots in both panels mark the extremes of the band gaps. (Online version in colour.)

Figure 6. Band-gap density reported for Fibonacci canonical rods designed according to elementary cells F_2 to F_8 whose constitutive properties are listed in table 1 ($\gamma \approx 2.125$). Three different values of the ratio l_S/l_L are assumed: 1, 1/2, 2/7, corresponding to $\beta = 1$ (Family no. 1), $\beta = 2$ (Family no. 2) and $\beta = 7/2$ (Family no. 3), respectively. (Online version in colour.)

By observing figure 6, we note that, for all the three types of canonical rods here analysed, the band gap density increases with the index i following a logarithmic trend. This is in agreement with the results presented in [42, 43] for electronic and optic systems subjected to quasiperiodic Fibonacci potentials.

In addition to the canonical ones, we can define a different class of waveguides whose ratio β is irrational. In this case, the spectrum is not periodic and the corresponding flow lines are open and cover ergodically the whole torus with uniform measure [44]. In this situation, it is commonly said that the orbits are dense on the torus [45]. Consequently, the flow trajectories on T_i consist of an infinite number of parallel segments which, in turn, cover ergodically the whole square domain. Therefore, the band gap density is given by the ratio between the area of the subdomain D_i and the area π^2 of the square. Since the measure of D_i is determined only by the parameter γ, which is independent of the ratio l_S/l_L, for non-canonical rods the band gap density does not depend on that ratio.

The fundamental differences between the flow lines of a canonical waveguide and those of non-canonical one are pointed out in figure 7. Figure 7a,b display the variation of the half trace
Figure 7. Half-trace diagrams and flow lines on \mathbb{T}_2 associated with cells F_2 characterized by the parameters listed in Table 1 and $(a,b) l_S/l_L = 1/2$, $(c,d) l_S/l_L = 1/2 + \sqrt{1/500}$, $(e,f) l_S/l_L = 1/2 + 3\sqrt{1/500}$, $(g,h) l_S/l_L = 1/2 + 10\sqrt{1/500}$. In coloured dots, mark the extremes of homologous band gaps. (Online version in colour.)

η_2 with the frequency and the trajectories on the reduced torus \mathbb{T}_2 for a canonical structure with parameters listed in Table 1 and $l_S/l_L = 1/2$, the same considered in Figure 3. The variation of η_2 is plotted for a frequency range equal to its period ($0 < \omega \lesssim 305$ krad s$^{-1}$). The corresponding extremes of band gaps both in the half-trace diagram and in \mathbb{T}_2 are marked using points with the same colours. As anticipated, due to the periodicity of the flow lines, all band gaps and pass bands in the frequency spectrum can be represented through the two parallel segments reported in Figure 7b. Indeed, by observing this figure, the first and the third band gap, whose extremes are
denoted by red and green points, respectively, overlap as well as the second and the fourth ones whose extremes are marked with magenta and yellow points, respectively.

The three pairs of figures 7c,d, 7e,f, 7g,h illustrate the diagrams of the half trace η_2 and the flow lines on \mathbb{T}_2 for cells F_2 with $l_s/l_L = 1/2 + \sqrt{1/500}$, $l_s/l_L = 1/2 + 3\sqrt{1/500}$ and $l_s/l_L = 1/2 + 10\sqrt{1/500}$, respectively. We assumed three different perturbations of the length ratio in order to have three irrational values of β and then three examples of non-canonical configurations. Their spectra are studied in the same range of frequencies of the canonical waveguide in figure 7a,b. We observe that for the three irrational ratios the half trace η_2 is no longer periodic, and the number of band gaps in the same frequency range increases with respect to the canonical case. Due to the lack of periodicity, band gaps are characterized by widths and relative distances that are all different from each other. This implies that the representation of each of them on \mathbb{T}_2 is associated with a different parallel segment, as shown in figure 7d,f,h. These segments are the images on the reduced torus of the three flow lines, which, in this case, are infinite. At an increase of the frequency range for the half traces in figure 7c,e,g, more and more segments are needed in order to depict the set of band gaps on the right-hand counterparts (figure 7d,f,h, respectively), up to cover the whole domain of \mathbb{T}_2. Therefore, for all the three non-canonical rods analysed, it is confirmed that the band gap density φ_i is given by the ratio between the area of D_2 and π^2. In general,

$$\varphi_i = \frac{1}{\pi^2} \int_{D_i(\gamma)} d\xi_s d\xi_L. \quad (4.5)$$

Unlike canonical structures, this value is univocally determined by the parameter γ and is independent of l_s/l_L.

We can now generalize the analysis provided for waveguides generated by F_2 to any arbitrary Fibonacci cell F_i. In analogy with the previous examples, we consider two phases with the same properties (table 1) and $l_s/l_L = \sqrt{3}/10$ and $l_s/l_L = \sqrt{1/2}$, corresponding to $\beta = \sqrt{10/3}$ and $\beta = \sqrt{2}$. We solve numerically the dispersion relation (2.9) over increasing intervals of frequencies, and at each iteration we estimate the ratio between the total length of the band gaps and the whole length of the frequency range. Calculations are carried out for structures designed according to cells F_2, F_3, F_4 and F_5; the results are shown in figures 8 and 9. Red lines with circle marks and blue lines with square marks map the band gap density for $l_s/l_L = \sqrt{3}/10$ and $l_s/l_L = \sqrt{1/2}$, respectively. For both cases, and in each panel, we note the convergence of the data to the black horizontal line that corresponds to φ_i in (4.5). These ratios can be estimated numerically or analytically for cell F_2 (see explicit expression derived in [26]), and in this case they are 0.5090 for F_2, 0.5098 for F_3, 0.5938 for F_3 and 0.6334 for F_5. The convergence observed for all panels in figures 8 and 9 demonstrates that for non-canonical structures the band gap density at a given value of γ is independent of the lengths of the phases S and L. Therefore, we can state that the band gap density is a universal property of classes of non-canonical waveguides characterized by a prescribed γ and an elementary cell F_i. This is in agreement with the results reached in [26], where it is shown that for irrational values of a parameter analogous to our β the band gap density of two phase laminates is independent of the thicknesses of the layers.

5. Band gap optimization using universality properties

The compact representation of the frequency spectrum on \mathbb{T}_i is now used to formulate rigorously and solve two types of optimization problems in periodic quasicrystalline-generated rods. We focus on the case of F_3 for which analytical representations of the boundaries of the band gaps are available, but the same approach can be easily applied to higher-order cells with the aid of implicit expressions similar to those obtained in [27].

The band gap subdomain D_3 is composed of two identical regions for any values of the parameter γ: one, namely D_{3S}^+, lies on the portion of \mathbb{T}_3 delimited by the intervals $0 \leq \xi_S \leq \pi$ and $0 \leq \xi_L \leq \pi/2$; the other, D_{3S}^-, occupies the portion delimited by the intervals $0 \leq \xi_S \leq \pi$ and $\pi/2 \leq \xi_L \leq \pi$ (figures 2d and 4b). The former is considered for the maximization of gap width, but the same methodology can be applied to D_{3S}^-. All points of the boundary of D_{3S}^+ satisfy the
condition $\eta_3(\zeta_S, \zeta_L) = -1$ and define the curves C_l^- and C_u^- whose analytical expressions are

$$\zeta_L = \arctan \left[\frac{(\gamma \pm \sqrt{\gamma^2 - 1}) \sin \zeta_S}{1 - \cos \zeta_S} \right], \quad (5.1)$$

where the upper curve C_u^- (lower one C_l^-) corresponds to the plus (minus) sign in the numerator. The width of the generic band gap $\{\omega^B - \omega^A\}$ is related to the length of the associated interval along the flow line, whose endpoints $A(\zeta_S^A, \zeta_L^A)$ and $B(\zeta_S^B, \zeta_L^B)$ lie on C_u^- and C_l^-, respectively, through the relationship

$$\omega^B - \omega^A = \frac{\nu_S}{\sqrt{1 + \beta^2}} \sqrt{(\zeta_S^B - \zeta_S^A)^2 + (\zeta_L^B - \zeta_L^A)^2}, \quad (5.2)$$

where $\nu_S = \sqrt{E_S/\sqrt{\rho_S l_S}}$. An equation analogous to (5.2) is obtained in [26], where it is used to derive exact expressions for the bounds of the band-gap widths in two-phase laminates as functions of the geometrical and physical properties of the unit cells. Since points A and B belong to the flow lines on T_3, their coordinates satisfy the relationships

$$\zeta_L^A = \beta \zeta_S^A + \alpha \quad \text{and} \quad \zeta_L^B = \beta \zeta_S^B + \alpha, \quad (5.3)$$
where \(\zeta^* = \zeta_X(\omega^*) \). Equations (5.2) and (5.3), together with expressions (5.1) for the curves \(\mathcal{C}_l^- \) and \(\mathcal{C}_u^- \), enable us to maximize the width of \(\{\omega^B - \omega^A\} \) through the flow lines defined on the basis of the physical and geometrical properties of the elementary cells.

(a) Identification of the widest band gap for a prescribed structure

We first consider a given cell \(\mathcal{F}_3 \) with prescribed physical and geometrical properties. Our purpose is to determine the interval \(\{\omega^B - \omega^A\} \) defining the widest band gap in the frequency spectrum of the structure. As \(\beta = (\zeta^B_l - \zeta^A_l)/(\zeta^B_u - \zeta^A_u) \), expression (5.2) can be written in the following form:

\[
\omega^B - \omega^A = v_S(\zeta^B_S - \zeta^A_S) = v_S \Delta \zeta_S.
\]

(5.4)

In this case, \(v_S \) and \(\beta \) are known and the goal is achieved by finding the value of the translation coefficient \(\alpha \) associated with the largest \(\Delta \zeta_S \). By imposing that both the points \(A \) and \(B \) lie on the flow line (5.3) and that \(A \in \mathcal{C}_l^- \) and \(B \in \mathcal{C}_u^- \), the following equations for the coordinates \(\zeta^A_S \) and \(\zeta^B_S \) are established

\[
\beta \zeta^A_S + \alpha = \arctan \left(\frac{(\gamma - \sqrt{\gamma^2 - 1}) \sin \zeta^A_S}{1 - \cos \zeta^A_S} \right),
\]

and

\[
\beta \zeta^B_S + \alpha = \arctan \left(\frac{(\gamma + \sqrt{\gamma^2 - 1}) \sin \zeta^B_S}{1 - \cos \zeta^B_S} \right),
\]

and then \(\Delta \zeta_S = \zeta^B_S - \zeta^A_S \) becomes

\[
\Delta \zeta_S = \frac{1}{\beta} \left\{ \arctan \left(\frac{(\gamma + \sqrt{\gamma^2 - 1}) \sin \zeta^B_S}{1 - \cos \zeta^B_S} \right) - \arctan \left(\frac{(\gamma - \sqrt{\gamma^2 - 1}) \sin \zeta^A_S}{1 - \cos \zeta^A_S} \right) \right\}.
\]

(5.7)

By eliminating \(\alpha \) between (5.5) and (5.6), it turns out that

\[
\Delta \alpha = \beta(\zeta^B_S - \zeta^A_S) - \arctan \left(\frac{(\gamma + \sqrt{\gamma^2 - 1}) \sin \zeta^B_S}{1 - \cos \zeta^B_S} \right) + \arctan \left(\frac{(\gamma - \sqrt{\gamma^2 - 1}) \sin \zeta^A_S}{1 - \cos \zeta^A_S} \right) = 0.
\]

(5.8)

The aim is now to determine the values of \(\zeta^A_S \) and \(\zeta^B_S \) that maximize the quantity (5.7) and are also a solution of equation (5.8). Then, the corresponding \(\alpha \) can be evaluated by means of (5.5) and (5.6). The problem can be solved graphically for any cell \(\mathcal{F}_3 \) through the two diagrams reported in figure 10. For the calculations, we considered a non-canonical configuration with the parameters listed in table 1 and \(l_S/l_L = 1/2 + 3\sqrt{1/500} \).

The contour plot in figure 10a shows the variation of the function (5.7) on the whole two-dimensional domain \(0 \leq \{\zeta^A_S, \zeta^B_S\} \leq \pi \), while the red line reported in the same figure is determined by the values of \(\zeta^A_S \) and \(\zeta^B_S \) satisfying equation (5.8). Point \(P \), whose coordinates are the solution to (5.8) and maximize \(\Delta \zeta_S \), is denoted by the yellow dot. It corresponds to the intersection between the red line and the blue curve, defined in this case through the equation \(\Delta \zeta_S = 0.589 \). We note that this point also coincides with the intersection between the curve (5.8) and the line \(\zeta^B_S = \pi - \zeta^A_S \).

Consequently, the coordinates \(\zeta^A_S \) and \(\zeta^B_S \) can be derived as the solution of the system

\[
\begin{align*}
\Delta \alpha(\zeta^A_S, \zeta^B_S) &= 0, \\
\zeta^B_S + \zeta^A_S &= \pi.
\end{align*}
\]

(5.9)

By substituting (5.9) into (5.10), we obtain

\[
\begin{align*}
\arctan \left(\frac{(\gamma + \sqrt{\gamma^2 - 1}) \sin \zeta^A_S}{1 - \cos \zeta^A_S} \right) - \arctan \left(\frac{(\gamma - \sqrt{\gamma^2 - 1}) \sin \zeta^A_S}{1 - \cos \zeta^A_S} \right) + \beta(\pi - 2\zeta^A_S) &= 0,
\end{align*}
\]

(5.10)

For the set of physical and geometrical properties assumed in the example, the solution of (5.10) is \(\zeta^A_S = 1.278 \) and \(\zeta^B_S = 1.863 \). Using these values in equation (5.5) (or (5.6)), \(\alpha = 1.692 \) is determined.
Figure 10. Widest band gap for a non-canonical cell F_3 designed assuming the parameters listed in Table 1 and $l_S/l_L = 1/2 + 3\sqrt{1/500}$. (a) Contour plot of the function $\Delta \xi_3(\xi_A^S, \xi_B^S)$. Red, blue and black lines are associated with equations $\Delta \alpha(\xi_A^S, \xi_B^S) = 0$, $\Delta \xi_3(\xi_A^S, \xi_B^S) = 0.589$ and $\xi_A^S + \xi_B^S = \pi$, respectively. (b) Graphic solution of system including equations (3.9) and (5.13); red, blue and black lines correspond to equations (5.13)1, (5.13)2 and (3.9), respectively; the green dot is placed at $n = 6, m = 10$. (Online version in colour.)

Remembering that in this case $l_S/l_L = 1/2 + 3\sqrt{1/500} = 1/\beta$, equation (5.3) provide $\xi_A^L = 0.324$ and $\xi_B^L = 1.246$.

We determined the translation coefficient of the flow segment corresponding to the widest band gap among all those detected in the spectrum of the structure, as well as the coordinates on T_3 of the points $A(\xi_A^S, \xi_A^L)$ and $B(\xi_B^S, \xi_B^L)$, associated with ω_A and ω_B. A and B are denoted by red dots in Figure 11b, and the width $\omega_B - \omega_A = 22.066 \text{krad s}^{-1}$ can be calculated through equation (5.4). On the basis of the definition (3.6), ω_A and ω_B are given by

$$\omega_A = \frac{1}{l_S} \sqrt{\frac{E_S}{q_S}} (\xi_A^S + n\pi) \quad \text{and} \quad \omega_B = \frac{1}{l_S} \sqrt{\frac{E_S}{q_S}} (\xi_B^S + n\pi)$$

(5.11)

or, alternatively,

$$\omega_A = \frac{1}{l_L} \sqrt{\frac{E_L}{q_L}} (\xi_A^L + m\pi) \quad \text{and} \quad \omega_B = \frac{1}{l_L} \sqrt{\frac{E_L}{q_L}} (\xi_B^L + m\pi),$$

(5.12)

where n and m are two whole numbers satisfying condition (3.9).

The invariance of T_3 and D_3 with respect to the transformations (3.5), together with the conditions $A \in C^+_i$ and $B \in C^{-}_i$, provides the following system of implicit equations

$$\begin{cases}
\eta_3(\xi_A^S + n\pi, \xi_B^S + n\pi) = -1, \\
\eta_3(\xi_B^S + n\pi, \xi_A^L + m\pi) = -1.
\end{cases}$$

(5.13)

The values of n and m corresponding to the extremes ω_A and ω_B of the maximal band gap are given by a pair of integer solutions of system (5.13) that satisfies the relationship (3.9). They can be found through a diagram like the one reported in Figure 10b, where the solutions of equation (5.13)1 and (5.13)2 correspond to the red and blue contours, respectively, and the black line is defined by equation (3.9). The green dot denotes the intersection of the three curves at $n = 6$ and $m = 10$, which are the required numbers in this case. By substituting them together with the previously calculated $\xi_A^S, \xi_B^S, \xi_A^L, \xi_B^L$ and the physical properties of the cell in expressions (5.11)
and (5.12), we finally determine $\omega^A = 759.69 \text{ krad s}^{-1}$ and $\omega^B = 781.76 \text{ krad s}^{-1}$. These extremal values are highlighted using the red dots in the diagram of the half trace η_3 reported in figure 11a.

The illustrated method can be easily applied to cells of higher order through the general approach developed in [27], where analytical expressions for the boundaries of the band gap subregions of periodic laminates with an arbitrary number of phases are derived. This original procedure provides several fundamental advantages with respect to the standard optimization methods based on the numerical evaluation of the frequency spectrum. This is obvious especially in the case of non-canonical structures as this is the case where the spectrum is not periodic, and then, in principle, calculations over an infinite frequency domain should be performed to determine the widest band gap. Since, in practice, calculations must be truncated, such an approach yields only an approximate solution. Moreover, there is currently any rigorous way to predict how the considered truncated subdomain allows an accurate estimation compared to the real infinite case. Contrarily, through the formulation over the torus T_3, the problem is solved in closed form, without any approximation, avoiding the numerical calculations required by the evaluation of large portions of the frequency spectrum. It is also worth remarking that the solutions m and n can be relatively high, at a frequency for which, due to the effects of lateral inertia, the simple one-dimensional axial model might be no longer valid.

(b) Optimization of the lowest band gap through variation of the geometrical properties

The second example of optimization, which can be formulated rigorously and solved by exploiting the representation of the spectrum on T_3, is here illustrated. Let us consider a cell F_3 with parameters listed in table 1, such that $\gamma \approx 2.125$ and the slope of the flow lines becomes $\beta = l_L/l_S$. Our aim is now to find the value of β that maximize the lowest band gap of the spectrum.

This one, i.e. $\{\omega^B - \omega^A\}$, is detected by the intersection between the region D_3^- and the flow segment starting from the origin of the plane $O\zeta_S\zeta_L$. Similarly to the case studied in §a, $A(\zeta_S^A, \zeta_L^A) \in C_1^-$ and $B(\zeta_S^B, \zeta_L^B) \in C_1^+$, and

$$\zeta_L^A = \beta \zeta_S^A \quad \text{and} \quad \zeta_L^B = \beta \zeta_S^B,$$

(5.14)

since $\alpha = 0$ in this problem. Equation (5.14)$_1$, together with the condition $A \in C_1^-$, provides the following expression for β:

$$\beta = \frac{1}{\zeta_S^A} \arctan \left[\frac{(\gamma - \sqrt{\gamma^2 - 1}) \sin \zeta_S^A}{1 - \cos \zeta_S^A} \right].$$

(5.15)
By substituting (5.15) into (5.14)₂ and imposing \(B \in C_ω \), we obtain

\[
\text{arctan} \left(\frac{\gamma + \sqrt{\gamma^2 - 1} \sin \xi_S^B}{1 - \cos \xi_S^B} \right) - \text{arctan} \left(\frac{\gamma - \sqrt{\gamma^2 - 1} \sin \xi_S^A}{1 - \cos \xi_S^A} \right) = 0.
\]

Assuming that \(L_S \) and then \(V_S \), is known, the expression for the width of the band gap (5.2) can be written in the normalized form

\[
\Delta \bar{\omega} = \frac{\omega^B - \omega^A}{V_S} = \frac{\sqrt{(\xi_S^B - \xi_S^A)^2 + (\xi_L^B - \xi_L^A)^2}}{\sqrt{1 + \beta^2}},
\]

where \(\beta \) is given by (5.15), \(\xi_L^A \) and \(\xi_L^A \) can be expressed as functions of \(\xi_S^A \) and \(\xi_S^A \) using (5.1). We now have to determine the values of \(\xi_S^A \) and \(\xi_S^A \) that maximize \(\Delta \bar{\omega} \) and are solution of equation (5.16). The problem is solved graphically using the diagram reported in figure 12a. The contour plot herein shows the variation of \(\Delta \bar{\omega} \) on the whole two-dimensional domain \(0 \leq (\xi_S^A, \xi_S^A) \leq \pi \), while the red line reported in the same figure is the plot of equation (5.16). Point \(Q \), whose coordinates are the solution of (5.16) and maximize \(\Delta \bar{\omega} \), is denoted by the yellow dot. It corresponds to the intersection between the red line and the blue contour, the latter defined through equation \(\Delta \bar{\omega} = 1.46 \). For the set of constitutive and geometrical parameters here considered, we have \(\xi_S^A = 1.215 \) and \(\xi_S^A = 2.675 \). By employing these values in equation (5.1), we get \(\xi_S^A = 0.345 \) and \(\xi_S^A = 0.769 \), and then, eventually, \(\beta = (\xi_L^B - \xi_L^A)/(\xi_S^B - \xi_S^A) = 0.284 \). Therefore, this solution provides the slope of the flow segment corresponding to the widest lowest band gap, and its extreme \(A(\xi_S^A, \xi_L^A) \) and \(B(\xi_S^A, \xi_L^A) \) on the reduced torus \(\mathbb{T}_3 \) are marked with the red dots in figure 12b. This result is valid for any given value of \(L_L \neq 0 \) which is assumed to be known for the calculations, and then the optimization procedure does not depend separately on lengths \(L_S \) and \(L_L \), but only on their ratio \(\beta \).

The illustrated method provides an exact solution to the problem of the maximization of the lowest band gap, which is of practical importance in several operative scenarios involving different types of phononic structures (see, e.g., [31–33]). The formulation over the reduced torus can be easily extended to the case of an arbitrary cell \(\mathcal{F}_i \) and represents a promising alternative.
to the direct approach based on partial evaluation of the frequency spectrum evaluation for all possible ratios l_S/l_L.

6. Scaling of the band gaps observed on the reduced torus

The universal representation of the spectrum on the reduced torus \mathbb{T}_I can be exploited to check the local scaling occurring between band gaps at determined frequencies, as shown earlier in [22,23,40] for different types of quasicrystalline phononic structures. Following their approach, let us identify with $R_i = (x_i, y_i, z_i)$ a point whose coordinates correspond to $x_i = \eta_{i+2}, y_i = \eta_{i+1}$ and $z_i = \eta_i$. On the basis of the recursive relation (3.2), the change of point R_i to R_{i+1} can be described as the evolution of the nonlinear discrete map

$$R_{i+1} = T(R_i) = (x_{i+1}, y_{i+1}, z_{i+1}) = (2x_iy_i - z_i, x_i, y_i). \quad (6.1)$$

We can easily demonstrate (e.g. [22]) that the invariant

$$J(\omega) = J(\zeta_5(\omega), \zeta_L(\omega); \gamma) = x_i^2 + y_i^2 + z_i^2 - 2x_iy_iz_i - 1 = (y^2 - 1) \sin^2 \zeta_5(\omega) \sin^2 \zeta_L(\omega) \quad (6.2)$$

is a constant, independent of index i. It is worth noting that $J = 1/4$, where I is the Kohmoto’s invariant defined in [23].

For any given value of the frequency, and then of the flux variables ζ_5 and ζ_L, equation (6.2) defines a manifold whose equation in the continuous three-dimensional space $Oxyz$ is $x^2 + y^2 + z^2 - 2xyz - 1 = J(\omega)$, the so-called Kohmoto’s surface [25]. The points obtained by iterating map (6.1) are all confined on this surface and describe an open, discrete trajectory. Each Kohmoto’s surface possesses six saddle points, say $\pm P_k (k = 1, 2, 3)$, whose coordinates are $\pm P_1 = (\pm 2\sqrt{1 + J(\omega)}, 0, 0), \pm P_2 = (0, \pm 2\sqrt{1 + J(\omega)}, 0), \pm P_3 = (0, 0, \pm 2\sqrt{1 + J(\omega)}).$ They are connected through a closed (periodic) orbit generated by the six-cycle transformation obtained by applying six times map (6.1), in other words, $T^6(P_k) = P_k.$ Moreover, it can be also verified that $T^3(P_k) = -P_k.$ The frequencies ω_c at which a generic R_i coincides with one of these saddle points are called canonical frequencies and are exactly midway of the semi-period of the spectrum ofcanonical structures [23]. For instance, in the cases addressed in figures 3–5 and 7, the period is approximately 305 krad s$^{-1}$ and canonical frequencies are approximately $305/4$ krad s$^{-1}$ and $(3/4) 305$ krad s$^{-1}$.

In the neighbourhood of ω_c, the corresponding point R_i locates in the vicinity of a saddle point, therefore the discrete trajectory traced by transformation of the point R_i itself at an increasing index on the Kohmoto’s surface is then studied as a small perturbation of the periodic orbit with map (6.1) linearized about the six saddle points. The derived linearized transformation has an eigenvalue that is equal to one and an additional pair of them given by

$$\kappa^\pm(\omega) = \left(\sqrt{1 + 4(1 + J(\omega))^2} \pm 2(1 + J(\omega)) \right)^2. \quad (6.3)$$

In both [22,23], it is shown that the quantity $\kappa^+(\omega_c)$ governs the local scaling occurring between localized ranges of the spectrum of cell F_i and that of F_{i+6}, while $\lambda \approx \sqrt{\kappa^+}$ is the scaling factor between F_i and F_{i+3}. In particular, across a canonical frequency, the width of a band gap in the diagram of cell F_{i+6} centred at frequency ω_c, say $\{\omega_i^V - \omega_i^U\}$, is related to that of $\{\omega_i^V - \omega_i^U\}$ in the diagram of cell F_i centred at the same frequency by the following scaling law:

$$\omega_i^V - \omega_i^U \approx \frac{\omega_i^V - \omega_i^U}{\kappa}, \quad (6.4)$$

where $\kappa = \kappa^+(\omega_c).$ Similarly, the following relationship can be established between the widths of $\{\omega_i^V - \omega_i^U\}$ and $\{\omega_i^V - \omega_i^U\}$:

$$\omega_i^V - \omega_i^U \approx \frac{\omega_i^V - \omega_i^U}{\lambda}. \quad (6.5)$$
As an example, let us consider Fibonacci canonical cells \mathcal{F}_i whose parameters are those in table 1 ($\gamma \approx 2.125$) and $l_S/l_L = 1$ ($\beta = 1$). For this class of structures, local scaling governed by (6.4) and (6.5) at $\omega_c = 37.596$ krad s$^{-1}$ is analysed. The numerical results are illustrated in figure 13, where the band gap associated with \mathcal{F}_5 is compared with that corresponding to \mathcal{F}_8 using close-up views of both the diagrams η_5 and η_8 (respectively, (a) and (c)) and the flow lines on the reduced tori T_5 and T_8 (respectively, (b) and (d)). The canonical frequency ω_c is indicated with green points and the magenta dot-dashed vertical lines on the left-hand sides, while the extremes of the band gaps U and V are denoted by the red points on the right. We note also in this case the perfect correspondence between the band gaps detected through the trace diagrams and the intersections of the flow lines with the subdomains D_5 and D_8. Concerning the band gap reported in figure 13a,b, numerical calculations yield $\omega^V_8 - \omega^U_8 = 3.407$ krad s$^{-1}$ and $\lambda = 18.12$. By using the relationship (6.5), the value $\omega^V_5 - \omega^U_5 \approx (\omega^V_5 - \omega^U_5)/\lambda = 0.188$ krad s$^{-1}$ is obtained, which is in very good agreement with the value provided by direct estimation of the band gap highlighted in figure 13c,d (i.e. $\omega^V_8 - \omega^U_8 = 0.186$ krad s$^{-1}$). We record the same scaling behaviour by comparing $\omega^V_5 - \omega^U_5$ with $\omega^V_{11} - \omega^U_{11}$ centred at the same ω_c. In this case, the scaling factor is $\kappa = \kappa(\omega_c) = 328.25$, the actual range $\omega^V_{11} - \omega^U_{11}$ measures 0.0103 krad s$^{-1}$, whereas relationship (6.4) provides $\omega^V_{11} - \omega^U_{11} \approx (\omega^V_5 - \omega^U_5)/\kappa = 0.0104$ krad s$^{-1}$.

The proposed example demonstrates how, in addition to the standard representation of the dispersion diagram, the typical scaling properties can be also pinpointed and estimated through the universal representation of the torus.
7. Concluding remarks

The characteristic features of the frequency spectrum for elastic waves propagating in a two-phase periodic medium can be revealed through its universal representation on a two-dimensional toroidal surface composed of pass band and band gap subregions. Frequency-dependent flow lines belonging to the surface can be defined for each configuration of the waveguide. In this paper, we exploited this possibility to investigate axial waves for a class of periodic rods whose elementary cell is generated through the Fibonacci substitution rule, an example of quasicrystalline sequence.

First, we have established the mechanical and geometrical conditions for which an elementary cell of the Fibonacci sequence may display closed flow lines on the torus, a circumstance that corresponds to the periodicity of the frequency spectrum and of the layout of pass bands and band gaps. We concluded that the required combination of parameters corresponds to that leading to the concept of canonical structures introduced by Morini & Gei [23]. For these types of arrangements, it turned out that the band gap density depends on the lengths of the two phases. Conversely, for non-canonical rods, the flow lines cover ergodically the torus and their band gap density is independent of the lengths of the constituents.

Second, we addressed analytically two illustrative band gap optimization problems, based on element F_3 of the Fibonacci sequence. Analytical expressions of the boundaries of band gap regions on the torus were exploited, on the one hand, to guide the design of the elementary cell to achieve the widest low-frequency band gap, on the other, to detect the maximal band gap in the spectrum for a given configuration. Thanks to the availability of the expressions of the boundaries of the band-gap regions on the torus, the proposed optimization technique is considerably more robust in comparison with the standard procedure based on the partial evaluation of the frequency spectrum [31–33], which necessarily relies on numerical algorithms.

In the final section, the local scaling governing the spectrum of quasicrystalline-generated phononic rods about certain relevant frequencies, as revealed in [23], was investigated and confirmed through the analysis of the flow lines on the torus.

The presented approach, based on the representation of pass band and band gap sub-regions on the toroidal manifold, can be easily extended to study other wave phenomena governed by an equation similar to (2.2) in different periodic systems, i.e. prestressed laminates, photonic crystals and composite nanostructures. Moreover, through the definition of an appropriate set of invariants that fully characterize the pass band/band gap layout, similar universality properties can be detected in spectra associated with different types of equations, such as, for example, those related to flexural systems [46,47], thin soft dielectric films [48] and plane strain laminates [49].

Data accessibility. This article has no data.

Authors’ contributions. L.M. and Z.G.T. carried out the numerical calculations. L.M. and M.G. performed the data analysis. L.M., G.S. and M.G. drafted the manuscript. All authors read and approved the manuscript.

Competing interests. The authors declare that they have no competing interests.

Funding. L.M. and M.G. were funded by the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie Actions COFUND grant SIRCIW, agreement no. 663830. G.S. was supported from ISF (grant no. 1912/15) and BSF (grant no. 2014358).

Acknowledgements. The authors gratefully acknowledge Dr Ram Band, Department of Mathematics, Technion-Israel Institute of Technology, for their insightful discussions on the research topic of the paper.

References

