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The dynamical properties of periodic two-component
phononic rods, whose elementary cells are generated
adopting the Fibonacci substitution rules, are studied
through the recently introduced method of the
toroidal manifold. The method allows all band gaps
and pass bands featuring the frequency spectrum to
be represented in a compact form with a frequency-
dependent flow line on the surface describing their
ordered sequence. The flow lines on the torus can
be either closed or open: in the former case, (i) the
frequency spectrum is periodic and the elementary
cell corresponds to a canonical configuration, (ii)
the band gap density depends on the lengths
of the two phases; in the latter, the flow lines
cover ergodically the torus and the band gap
density is independent of those lengths. It is then
shown how the proposed compact description of
the spectrum can be exploited (i) to find the
widest band gap for a given configuration and
(ii) to optimize the layout of the elementary cell
in order to maximize the low-frequency band gap.
The scaling property of the frequency spectrum,
that is a distinctive feature of quasicrystalline-
generated phononic media, is also confirmed by
inspecting band-gap/pass-band regions on the torus
for the elementary cells of different Fibonacci orders.

2019 The Author(s) Published by the Royal Society. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsta.2019.0240&domain=pdf&date_stamp=2019-11-25
http://dx.doi.org/10.1098/rsta/378/2162
mailto:morinil@cardiff.ac.uk
http://orcid.org/0000-0002-4574-0905


2

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190240

................................................................

This article is part of the theme issue ‘Modelling of dynamic phenomena and localization in
structured media (part 2)’.

1. Introduction
In the last 50 years, the investigation of wave propagation in structured media and their
applications in different areas of engineering have attracted significant interest from the scientific
community. In this context, the contribution of Prof. Slepyan and his collaborators was essential
for understanding and predicting several phenomena, in particular, transition waves in periodic
and bistable structures [1–4], interaction between surface modes and fractures [5,6], dissipation
and phase transition in lattice materials [7–9] and solitary nonlinear waves [10,11]. These
fundamental studies, together with the results obtained by other authors [12–15], have inspired
a very active field of research, concerning the design of phononic structures with the aim of
achieving and controlling non-standard wave propagation phenomena, such as wave focusing
[16], frequency filtering [17], cloaking [18,19] and negative refraction [20,21]. Recently, the
intriguing dynamical properties of a class of two-phase periodic structured solids, whose unit
cells are generated according to the Fibonacci substitution rule, have been presented [22,23]. This
particular family of composite structures belongs to the subset of quasicrystalline media [24] and
the portion of Floquet–Bloch frequency spectra of its members are characterized by a self-similar
pattern which scales according to the factors linked to the Kohmoto’s invariant of the family
itself [25].

This work provides new insights on the relationship between the geometrical and constitutive
properties of the elementary cells and the layout of pass bands/band gaps for the same type
of quasicrystalline-generated phononic rods. By considering harmonic axial waves, we show
that the corresponding frequency spectrum can be represented on a two-dimensional toroidal
manifold similar to that introduced in [26,27] to study Floquet–Bloch waves in periodic laminates.
This manifold is universal for all two-phase configurations and the dispersion properties of
the concerned rod can be inferred from the features of the frequency-parametrized flow lines
lying on the toroidal domain, which is composed of band gap and pass-band regions. We
identify a particular subclass of rods whose flow lines on the torus are closed, thus describing
a periodicity in the spectrum at an increasing frequency, and show that the subclass coincides
with that of the so-called canonical structures introduced by Morini and Gei [23]. The local
scaling governing the pass band/band gap layout about certain relevant frequencies (i.e. the
canonical frequencies) is confirmed and highlighted through the analysis of the flow lines on the
torus.

The universal representation of the spectrum on the toroidal surface allows us to rigorously
estimate the band gap density for rods of any arbitrary Fibonacci elementary cell. We find that
for canonical configurations, this quantity varies with the ratio between the lengths of the phases,
corresponding to the slope of the flow lines. Conversely, for generic non-canonical rods, the band
gap density is independent of the lengths of the cells and is defined by the ratio between the area
of the band gap subdomain and the total surface of the torus [28–30]. The provided examples
show that this ratio can be easily evaluated numerically.

We further demonstrate how the compact representation of the spectrum on the two-
dimensional torus can be exploited to either optimize the design of the elementary cells to
achieve the widest low-frequency band gap or to determine rigorously where the maximal band
gap is located in the spectrum for a given configuration. In the examples that we report, we
have based this investigation on analytical expressions of the boundaries of band gap regions
that can be easily obtained for low-order elementary cells. Unlike the standard procedure
based on partial evaluation of the spectrum [31–33], the proposed optimization strategy
provides exact rigorous results, and it can be easily generalized to Fibonacci cells of higher
order.
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Figure 1. Elementary cells for infinite Fibonacci rods based onF2 = LS,F3 = LSL andF4 = LSLLS. Symbols r and l denote
right-hand and left-hand boundaries of the cell, respectively.

2. Waves in quasicrystalline-generated phononic rods
We introduce a particular class of infinite, one-dimensional, two-component phononic rods
consisting of a repeated elementary cell where two distinct elements, say L and S, are arranged
in series according to the Fibonacci sequence [24]. The repetition of such a cell implies periodicity
along the axis and then the possibility of applying the Floquet–Bloch technique in order to study
harmonic wave propagation. The two-component Fibonacci sequence is based on the following
substitution rule [34]

L → LS and S → L. (2.1)

Expression (2.1) implies that the ith (i = 0, 1, 2, . . .) element of the Fibonacci sequence, here denoted
by Fi, obeys the recursive rule Fi =Fi−1Fi−2, where the initial conditions are F0 = S and F1 = L
(in figure 1, elementary cells designed according to sequences F2, F3 and F4 are displayed).1 The
total number of elements of Fi corresponds to the Fibonacci number ñi given by the recurrence
relation ñi = ñi−1 + ñi−2, with i ≥ 2, and ñ0 = ñ1 = 1. The limit of ñi+1/ñi for i → ∞ corresponds to
the so-called golden mean ratio (1 + √

5)/2.
Further in the text, we will refer to those structured rods as Fibonacci structures. According to

the general criterion for the classification of the one-dimensional quasiperiodic patterns proposed
in [35], these structures are quasicrystalline. Quasicrystalline media possess characteristic features
that make them an intermediate class between periodic ordered crystals and random media
[36,37]. An example of these interesting and intriguing properties is the self-similarity of the
frequency spectrum [23]. The focus of this paper is on the analysis of the universal structure of this
spectrum and on its application to predict, modulate and optimize the corresponding stop/pass
band layout. We will show that the universality of the spectrum is closely related to the properties
of the Floquet–Bloch dispersion relation exploited in [22] and summarized in this Section.

Let us introduce the mechanical and geometric parameters of elements L and S. The lengths
of the two phases are indicated with lL and lS, while AX, EX and �X (X ∈ {L, S}) denote cross-
section area of each bar, Young’s modulus and mass density per unit volume of the two adopted
materials. For both elements, we define the displacement function and the axial force along the
rod as u(z) and N(z) = EAu′(z), respectively, where z is the coordinate describing the longitudinal
axis. The governing equation of harmonic waves in each section assumes the form

u′′
X(z) + �X

EX
ω2uX(z) = 0, (2.2)

1Henceforth, the notation Fi will indicate both the sequence and the elementary cell of the structured rod.
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where ω ∈ R
+ is the circular frequency (simply the ‘frequency’ in the following) and the term

�X/EX corresponds to the reciprocal of the square of the speed of propagation of longitudinal
waves in material X. The solution of (2.2) is given by

uX(z) = CX
1 sin

(√
�X

EX
ωz
)

+ CX
2 cos

(√
�X

EX
ωz
)

, (2.3)

where CX
1 and CX

2 are integration constants, to be determined by the boundary conditions.
To obtain the dispersion diagram of the periodic rod, displacement ur and axial force Nr at the

right-hand boundary of the elementary cell have to be given in terms of those at the left-hand
boundary, namely ul and Nl (figure 1), as

Ur = TiUl, (2.4)

where Uj = [uj Nj]T (j = r, l) and Ti is a transfer (or transmission) matrix of the cell Fi. This matrix

is the result of the product Ti =∏ñi
p=1 TX, where TX (X ∈ {L, S}) is the transfer matrix, which relates

quantities across a single element, given by

TX =

⎡
⎢⎢⎢⎢⎣

cos
(√

�X

EX
ωlX

) sin
(√

�X/EX ωlX
)

EXAX
√

�X/EX ω

−EXAX

√
�X

EX
ω sin

(√
�X

EX
ωlX

)
cos

(√
�X

EX
ωlX

)

⎤
⎥⎥⎥⎥⎦ . (2.5)

Transfer matrices Ti have some important properties that can be exploited: (i) they are
unimodular, i.e. det Ti = 1, and (ii) follow the recursion rule

Ti+1 = Ti−1Ti, (2.6)

with T0 = TS and T1 = TL.
The Floquet–Bloch theorem implies that Ur = exp(ikLi)Ul, where Li is the total length of the

fundamental cell Fi and the imaginary unit appearing in the argument of the exponential function
should not be confused with the index i. By combining this condition with (2.4), we obtain the
dispersion equation

det[Ti − eikLi I] = 0. (2.7)

The solution of equation (2.7) provides the complete Floquet–Bloch spectrum and allows us to
obtain the location of band gaps and pass bands associated with the infinite rods here considered.

Equivalently, we can study the dispersion properties of these structures by evaluating the
eigenvalues of the transfer matrix. As Ti is unimodular, it turns out that the characteristic equation
of the waveguide is given by

det[Ti − λI] = 0 ⇒ λ2 − λ trTi + 1 = 0. (2.8)

By substituting eikLi = λ in equation (2.8) and multiplying it by e−ikLi , the condition eikLi + e−ikLi −
trTi = 0 is achieved, leading to

ηi = cos kLi, (2.9)

where ηi = trTi/2.
By observing equation (2.9), we can easily deduce that all the information concerning

harmonic axial wave propagation in a Fibonacci structure is contained in the half trace ηi of
the corresponding transfer matrix. Waves propagate when |ηi| < 1 (kLi ∈ R\{x : x = hπ , h ∈ Z}),
band gaps correspond to the ranges of frequencies where |ηi| > 1 (k is a complex number with
a non-vanishing imaginary part), whereas |ηi| = 1 characterizes standing waves (kLi ∈ {x : x = hπ ,
h ∈ Z}).

We note that both the transfer matrix (2.5) and the dispersion relation (2.9) possess a form
identical to that derived in [38,39] and used in [26,27,40] to study antiplane shear waves in
periodic two-phase, multiphase and quasicrystalline laminates, respectively. Further in the paper,
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we will exploit this mathematical analogy generalizing the approach proposed in [26] to study the
universal structure of the frequency spectrum of Fibonacci phononic rods.

3. Universal structure of the frequency spectrum
The analysis of the universal structure of the frequency spectrum will take advantage of the
introduction of the following variables [26,28–30]:

ζX =
√

�X

EX
ωlX (X ∈ {L, S}). (3.1)

The unimodularity property of Ti, together with the relationship (2.6), implies the following
recursive rule for the half trace ηi+1 [23]:

ηi+1 = 2ηiηi−1 − ηi−2 with i ≥ 2, (3.2)

where the initial conditions are

η0(ζS) = cos ζS, η1(ζL) = cos ζL, η2(ζS, ζL; γ ) = cos ζS cos ζL − γ sin ζS sin ζL. (3.3)

The quantity

γ = 1
2

(
ALEL

ASES

√
�LES

�SEL
+ ASES

ALEL

√
�SEL

�LES

)
(3.4)

quantifies the impedance mismatch between the phases L and S, and it depends on their
constitutive parameters but not on lengths of the single elements L and S. When γ = 1 there is
no contrast between phases and the waveguide behaves as a homogeneous one. Expressions (3.3)
show that for any given value of γ , η0, η1 and η2 are 2π -periodic functions of ζS and ζL. The
generic half trace ηi can be derived by means of successive iterations of the recursive formula (3.2)
by assuming (3.3) as initial conditions. Therefore, at any order i, ηi is also a 2π -periodic function,
separately, of ζS and ζL as it is defined through sums and products of functions with the same
period. This implies that we can consider the half trace ηi as a function of a two-dimensional
torus of edge length 2π , whose toroidal and poloidal coordinates are ζS and ζL, respectively.
This function is independent of the lengths of the two phases L and S. The toroidal domain
is composed of two complementary subspaces that are associated with the two inequalities
introduced earlier in the discussion after equation (2.9), namely |ηi(ζS, ζL)| < 1 identifies a pass-
band subdomain, whereas |ηi(ζS, ζL)| > 1 corresponds to a band-gap one. The two regions might
not be simply connected and the collection of lines of separation between the two subdomains,
in which |ηi(ζS, ζL)| = 1, denotes a standing wave solution. The measures of the two regions are
univocally determined by the value of the parameter γ .

A sketch of the toroidal domains for cells F2 and F3 is displayed in figure 2a,b where the set of
physical properties tabled in table 1 have been assumed (for that choice, γ ≈ 2.125). In both plots,
the pink zone corresponds to the pass-band region, whereas the band-gap one is painted in grey.

Equation (2.9) shows that |ηi(ζS, ζL)| is invariant under the transformation

ζS → ζS + nπ , ζL → ζL + mπ (n, m ∈ N), (3.5)

so that, as pointed out in [26], the map on the torus can be equivalently represented on a
reduced π -periodic torus. The latter can be conveniently represented through the so-called square
identification [41], in which the curved domain is flattened and transformed to a square whose
edges are still described by coordinates ζS and ζL, both ranging now between 0 and π . In the
new square representation, the band-gap subdomain (|ηi(ζS, ζL)| > 1) is denoted by Di(γ ). In the
following, the square equivalent π -periodic torus with the domain Di(γ ) will be indicated with
Ti. At times, we will also refer to it as the ‘reduced torus’ for the cell Fi.

In figure 2c,d, the reduced tori T2 and T3 are reported. The light blue, light red and light brown
regions in both plots denote the subdomains D2(γ ) and D3(γ ) determined for γ ≈ 8.031, 2.125 and
1.170, respectively. In particular, the light red ones are the representation of the band gap domains
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Table 1. Mechanical and geometrical parameters adopted in the numerical calculations.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ES = EL = 3.3 GPa �S = �L = 1140 kg m−3 AL = 4AS = 1.963 × 10−3 m2 lL = 0.07 m
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

depicted in grey on the original 2π -periodic tori reported just above in the same figure 2a,b,
respectively.

The spectrum for a Fibonacci rod of any arbitrary order can, therefore, be studied by analysing
the dynamic flow parametrized ζ (ω) = (ζS(ω), ζL(ω)) on the corresponding reduced torus, where
the frequency ω plays the role of a time-like parameter. This flow is the image on Ti of the
trajectories described by the angles ζS and ζL on the original torus. Two examples of the latter
are the blue lines reported in figure 2a,b. In order to represent these flow lines on Ti, we interpret
expression (3.1) as the equation of a rectilinear trajectory lying on the square. Now, for any
arbitrary Fibonacci cell Fi for which a specific indication for lengths lL and lS is provided, we can
depict the trajectory (3.1) on Ti as those illustrated for F2 and F3 in the two plots of figure 2c,d.
For this purpose, if we consider values of the frequency such that

√
�X/EXωlX > π , by recalling

the invariance of Ti and of its subdomain Di(γ ) with respect to transformations (3.5), expression
(3.1) can be written in the transformed form as

ζS(ω) =
√

�S

ES
ωlS − nπ and ζL(ω) =

√
�L

EL
ωlL − mπ (n, m ∈ N). (3.6)

Consequently, the trajectory (3.1) reported on Ti appears as a set of parallel segments as those
reported in blue in figure 2 c,d, and the flow ζ (ω) can be expressed as

ζ (ω) = ω

(√
�S

ES
lS,
√

�L

EL
lL

)
mod π . (3.7)

The segments shown in figure 2c,d are the images of the flow lines illustrated in figure 2a,b,
respectively. By examining these lines, we can easily observe that they trace a closed trajectory on
the torus. In the next section, the class of structures, whose spectra are described by this particular
type of flow lines, is defined and characterized in detail.

The values of ω, for which the lines of the flow (3.7) intersect the boundary of the subdomain
Di(γ ), coincide with the extremes of the band gaps. These intersections are highlighted with red
points in figure 2c,d for waveguides generated by F2 and F3 for γ ≈ 2.125. The same band gaps
are illustrated in the classical dispersion diagrams of figure 2e,f.

A parametric equation for the flow lines on Ti is easily derived from equation (3.6)

ζL(ω) = α + βζS(ω), (3.8)

where

α = π (βn − m), (3.9)

and the angular coefficient

β =
√

�LES

�SEL

lL
lS

(3.10)

defines the direction of the flow (i.e. the slope of the blue segments shown in figure 2c,d).
In particular, the segment emerging from the origin for ω = 0+ (i.e. m = n = 0) has equation
ζL(ω) = βζS(ω). In the next section, we discuss how rational and irrational values of ratio (3.10)
are associated with Fibonacci rods possessing periodic and non-periodic spectra, respectively,
corresponding to closed and open trajectories on the 2π -periodic torus, respectively. Both these
two different behaviours are studied by analysing the flow lines on Ti. Relevant indications
concerning the band gap density and the different properties of rods with periodic and non-
periodic spectra are obtained by using this universal approach.
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4. Analysis of the flow lines on the reduced torus
Let us analyse the different types of trajectories (lines) that can describe the flow ζ (ω) on the torus.
The condition for closed periodic lines is the existence of a frequency interval Ω such that [41]

ζS(ω + Ω) = ζS(ω) + 2π j and ζL(ω + Ω) = ζL(ω) + 2πq (j, q ∈ N). (4.1)

By combining expressions (4.1) with equation (3.1), we derive the relationships√
�S

ES
lS = 2π j

Ω
and

√
�L

EL
lL = 2πq

Ω
, (4.2)

and then the ratio
β = q

j
. (4.3)

We can deduce from expression (4.3) that the trajectories on the torus are periodic if the ratio
β is a rational number. This condition is exactly the same as that introduced in [23] and necessary
to realize Fibonacci structures with a periodic spectrum, which are called in that article canonical
structures. Therefore, canonical configurations correspond to closed flow trajectories on the torus.
Considering the original 2π -periodic torus, these are closed helicoidal orbits on the surface as
those reported in figure 2a,b. The two whole numbers j and q represent the number of cycles,
namely 2π rotations, about the toroidal and poloidal axes. As an example, both blue trajectories
of figure 2a,b correspond to j = 1 and q = 2 and then to β = 2. On Ti, the closed flow lines associated
with canonical structures become a finite number of parallel segments. The periodicity of the
dispersion diagram is verified in figure 2e,f where the band gap limits already highlighted in
the companion graphs plotted above (i.e. (c) and (d), respectively) are marked with red points.

In figures 3, 4 and 5, examples of periodic flow lines for canonical structures generated by the
repetition of cells F2, F3 and F4 are reported. For the calculations, we considered two phases S
and L of the same material (ES = EL and �S = �L, see table 1) so that parameters γ and β become

γ = 1
2

(
AS

AL
+ AL

AS

)
and β = lL

lS
. (4.4)

As a consequence, the areas of subdomains Di
2 depend only on ratio AS/AL, while the direction

of flow is defined by lS/lL. Moreover, according to the classification provided in [23], the analysed
rods belong to the second family of canonical configurations.

In the plots on the left-hand side of each of figures 3–5, diagrams are presented of the half
traces η2, η3, η4 reported as functions of ω for an interval of frequencies which coincides with
the half period of the spectrum. We use coloured dots to earmark the extremes of the intervals
where |η2|, |η3|, |η4| > 1, defining the band gaps. The flow lines on T2, T3 and T4 are reported
on the right-hand side of each figure. Their intersection with the boundaries of D2, D3 and D4,
which identify the extreme of the band gaps, are indicated with the same coloured dots. We used
the same colour cod in both diagrams of traces and Ti in order to associate the corresponding
band gap in the two different representations. We note that the flow diagrams in Ti highlight all
the band gaps contained in the half period of the canonical structures, and then the successive
band gaps can be visualized using the same finite number of segments on Ti and applying
the transformation (3.6). Therefore, for canonical structures generated by any arbitrary cell Fi,
the band gap density ϕi is given by the ratio between the measure of the intersections between
the flow lines and the subdomain Di, and the total length of the flow lines. The latter is given by

the sum of all the parallel segments reported in figures 3–5 and corresponding to
√

j2 + q2π . This
ratio depends on both the area of Di and the direction of the flow lines, and then on both γ and β

parameters.
The values of the band gap density for three different examples of canonical structures with

elementary cells from F2 to F8 are reported in figure 6. We assumed the same constitutive
properties used for the results shown in figures 3–5 (table 1) and three different ratios lS/lL which,

2From now on the dependency on γ of Di will be dropped.
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Figure 4. Half-trace function (a) and flow lines on diagram T2 (b) for a F3 canonical Fibonacci rod characterized by the
parameters listed in table 1 and lS/lL = 1/2 (γ ≈ 2.125,β = 2). Coloured dots in both panels mark the extremes of the band
gaps. (Online version in colour.)

in this particular case, correspond to three values of β, namely 1, 2 and 7/2 (see equation (4.4)2).
According to the definition provided in [23], those three ratios are associated with canonical
structures which belong to the first, the second and the third family. The three families are
distinguished by different stop and pass band layouts, but they all possess periodic spectra with
properties depending exclusively on β. Figure 6 shows that the value of the band gap density is
different for cells of the same order i, but with distinct values of the parameter β. This confirms,
as we have already mentioned, that the band gap density of canonical rods depends on the ratio
lS/lL. As a consequence, if we assume given constitutive properties of the phases S and L (i.e. ES,
EL, �S and �L) and given cross-sections AL and AS, and then we determine univocally the domain
Ti and the area of the subspace Di, we can modulate the band gap density by simply varying
the ratio lS/lL. Indeed, by changing this parameter, we assign a different direction to the flow
lines on the torus or equivalently to the slope of the segments on the square identification of Ti,
determining the band gap intervals which coincide with intersections of the flow trajectories with
the subdomain Di.
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Figure 5. Half-trace function (a) and flow lines on diagram T2 (b) for a F4 canonical Fibonacci rod characterized by the
parameters listed in table 1 and lS/lL = 1/2 (γ ≈ 2.125,β = 2). Coloured dots in both panels mark the extremes of the band
gaps. (Online version in colour.)
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Figure 6. Band-gap density reported for Fibonacci canonical rods designed according to elementary cells F2 to F8 whose
constitutive properties are listed in table 1 (γ ≈ 2.125). Three different values of the ratio lS/lL are assumed: 1, 1/2, 2/7,
corresponding toβ = 1 (Family no. 1),β = 2 (Family no. 2) andβ = 7/2 (Family no. 3), respectively. (Online version in colour.)

By observing figure 6, we note that, for all the three types of canonical rods here analysed, the
band gap density increases with the index i following a logarithmic trend. This is in agreement
with the results presented in [42,43] for electronic and optic systems subjected to quasiperiodic
Fibonacci potentials.

In addition to the canonical ones, we can define a different class of waveguides whose ratio β is
irrational. In this case, the spectrum is not periodic and the corresponding flow lines are open and
cover ergodically the whole torus with uniform measure [44]. In this situation, it is commonly said
that the orbits are dense on the torus [45]. Consequently, the flow trajectories on Ti consist of an
infinite number of parallel segments which, in turn, cover ergodically the whole square domain.
Therefore, the band gap density is given by the ratio between the area of the subdomain Di and
the area π2 of the square. Since the measure of Di is determined only by the parameter γ , which
is independent of the ratio lS/lL, for non-canonical rods the band gap density does not depend on
that ratio.

The fundamental differences between the flow lines of a canonical waveguide and those of
non-canonical one are pointed out in figure 7. Figure 7a,b display the variation of the half trace
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Figure 7. Half-trace diagrams andflow lines onT2 associatedwith cellsF2 characterizedby theparameters listed in table 1 and
(a,b) lS/lL = 1/2, (c,d) lS/lL = 1/2 + √

1/500, (e,f ) lS/lL = 1/2 + 3
√
1/500, (g,h) lS/lL = 1/2 + 10

√
1/500. In coloured

dots, mark the extremes of homologous band gaps. (Online version in colour.)

η2 with the frequency and the trajectories on the reduced torus T2 for a canonical structure with
parameters listed in table 1 and lS/lL = 1/2, the same considered in figure 3. The variation of
η2 is plotted for a frequency range equal to its period (0 < ω � 305 krad s−1). The corresponding
extremes of band gaps both in the half-trace diagram and in T2 are marked using points with
the same colours. As anticipated, due to the periodicity of the flow lines, all band gaps and pass
bands in the frequency spectrum can be represented through the two parallel segments reported
in figure 7b. Indeed, by observing this figure, the first and the third band gap, whose extremes are
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denoted by red and green points, respectively, overlap as well as the second and the fourth ones
whose extremes are marked with magenta and yellow points, respectively.

The three pairs of figures 7c,d, 7e,f, 7g,h illustrate the diagrams of the half trace η2 and the
flow lines on T2 for cells F2 with lS/lL = 1/2 + √

1/500, lS/lL = 1/2 + 3
√

1/500 and lS/lL = 1/2 +
10

√
1/500, respectively. We assumed three different perturbations of the length ratio in order to

have three irrational values of β and then three examples of non-canonical configurations. Their
spectra are studied in the same range of frequencies of the canonical waveguide in figure 7a,b. We
observe that for the three irrational ratios the half trace η2 is no longer periodic, and the number
of band gaps in the same frequency range increases with respect to the canonical case. Due to
the lack of periodicity, band gaps are characterized by widths and relative distances that are all
different from each other. This implies that the representation of each of them on T2 is associated
with a different parallel segment, as shown in figure 7d,f,h. These segments are the images on
the reduced torus of the three flow lines, which, in this case, are infinite. At an increase of the
frequency range for the half traces in figure 7c,e,g, more and more segments are needed in order to
depict the set of band gaps on the right-hand counterparts (figure 7d,f,h, respectively), up to cover
the whole domain of T2. Therefore, for all the three non-canonical rods analysed, it is confirmed
that the band gap density ϕi is given by the ratio between the area of D2 and π2. In general,

ϕi = 1
π2

∫ ∫
Di(γ )

dζSdζL. (4.5)

Unlike canonical structures, this value is univocally determined by the parameter γ and is
independent of lS/lL.

We can now generalize the analysis provided for waveguides generated by F2 to any arbitrary
Fibonacci cell Fi. In analogy with the previous examples, we consider two phases with the same
properties (table 1) and lS/lL = √

3/10 and lS/lL = √
1/2, corresponding to β = √

10/3 and β = √
2.

We solve numerically the dispersion relation (2.9) over increasing intervals of frequencies, and at
each iteration we estimate the ratio between the total length of the band gaps and the whole length
of the frequency range. Calculations are carried out for structures designed according to cells F2,
F3, F4 and F5; the results are shown in figures 8 and 9. Red lines with circle marks and blue lines
with square marks map the band gap density for lS/lL = √

3/10 and lS/lL = √
1/2, respectively.

For both cases, and in each panel, we note the convergence of the data to the black horizontal
line that corresponds to ϕi in (4.5). These ratios can be estimated numerically or analytically for
cell F2 (see explicit expression derived in [26]), and in this case they are 0.5090 for F2, 0.5098
for F3, 0.5938 for F3 and 0.6334 for F5. The convergence observed for all panels in figures 8 and
9 demonstrates that for non-canonical structures the band gap density at a given value of γ is
independent of the lengths of the phases S and L. Therefore, we can state that the band gap density
is a universal property of classes of non-canonical waveguides characterized by a prescribed γ

and an elementary cell Fi. This is in agreement with the results reached in [26], where it is shown
that for irrational values of a parameter analogous to our β the band gap density of two phase
laminates is independent of the thicknesses of the layers.

5. Band gap optimization using universality properties
The compact representation of the frequency spectrum on Ti is now used to formulate rigorously
and solve two types of optimization problems in periodic quasicrystalline-generated rods. We
focus on the case of F3 for which analytical representations of the boundaries of the band gaps
are available, but the same approach can be easily applied to higher-order cells with the aid of
implicit expressions similar to those obtained in [27].

The band gap subdomain D3 is composed of two identical regions for any values of the
parameter γ : one, namely D

−
3 , lies on the portion of T3 delimited by the intervals 0 ≤ ζS ≤ π

and 0 ≤ ζL ≤ π/2; the other, D
+
3 , occupies the portion delimited by the intervals 0 ≤ ζS ≤ π and

π/2 ≤ ζL ≤ π (figures 2d and 4b). The former is considered for the maximization of gap width,
but the same methodology can be applied to D

+
3 . All points of the boundary of D

−
3 satisfy the
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condition η3(ζS, ζL) = −1 and define the curves C−
l and C−

u whose analytical expressions are

ζL = arctan

[
(γ ±

√
γ 2 − 1) sin ζS

1 − cos ζS

]
, (5.1)

where the upper curve C−
u (lower one C−

l ) corresponds to the plus (minus) sign in the numerator.
The width of the generic band gap {ωB − ωA} is related to the length of the associated interval
along the flow line, whose endpoints A(ζA

S , ζA
L ) and B(ζB

S , ζB
L ) lie on C−

u and C−
l , respectively,

through the relationship

ωB − ωA = νS√
1 + β2

√
(ζB

S − ζA
S )2 + (ζB

L − ζA
L )2, (5.2)

where νS = √
ES/(

√
�SlS). An equation analogous to (5.2) is obtained in [26], where it is used

to derive exact expressions for the bounds of the band-gap widths in two-phase laminates as
functions of the geometrical and physical properties of the unit cells. Since points A and B belong
to the flow lines on T3, their coordinates satisfy the relationships

ζA
L = βζA

S + α and ζB
L = βζB

S + α, (5.3)
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where ζ •
X = ζX(ω•). Equations (5.2) and (5.3), together with expressions (5.1) for the curves C−

l and
C−

u , enable us to maximize the width of {ωB − ωA} through the flow lines defined on the basis of
the physical and geometrical properties of the elementary cells.

(a) Identification of the widest band gap for a prescribed structure
We first consider a given cell F3 with prescribed physical and geometrical properties. Our purpose
is to determine the interval {ωB − ωA} defining the widest band gap in the frequency spectrum of
the structure. As β = (ζB

L − ζA
L )/(ζB

S − ζA
S ), expression (5.2) can be written in the following form:

ωB − ωA = νS(ζB
S − ζA

S ) = νS�ζS. (5.4)

In this case, νS and β are known and the goal is achieved by finding the value of the translation
coefficient α associated with the largest �ζS. By imposing that both the points A and B lie on the
flow line (5.3) and that A ∈ C−

l and B ∈ C−
u , the following equations for the coordinates ζB

S and ζA
S

are established

βζA
S + α = arctan

[
(γ −

√
γ 2 − 1) sin ζA

S

1 − cos ζA
S

]
(5.5)

and

βζB
S + α = arctan

[
(γ +

√
γ 2 − 1) sin ζB

S

1 − cos ζB
S

]
, (5.6)

and then �ζS = ζB
S − ζA

S becomes

�ζS = 1
β

{
arctan

[
(γ +

√
γ 2 − 1) sin ζB

S

1 − cos ζB
S

]
− arctan

[
(γ −

√
γ 2 − 1) sin ζA

S

1 − cos ζA
S

]}
. (5.7)

By eliminating α between (5.5) and (5.6), it turns out that

�α = β(ζB
S − ζA

S ) − arctan

[
(γ +

√
γ 2 − 1) sin ζB

S

1 − cos ζB
S

]
+ arctan

[
(γ −

√
γ 2 − 1) sin ζA

S

1 − cos ζA
S

]
= 0. (5.8)

The aim is now to determine the values of ζA
S and ζB

S that maximize the quantity (5.7) and are also
a solution of equation (5.8). Then, the corresponding α can be evaluated by means of (5.5) and
(5.6). The problem can be solved graphically for any cell F3 through the two diagrams reported in
figure 10. For the calculations, we considered a non-canonical configuration with the parameters
listed in table 1 and lS/lL = 1/2 + 3

√
1/500.

The contour plot in figure 10a shows the variation of the function (5.7) on the whole two-
dimensional domain 0 ≤ {ζA

S , ζB
S } ≤ π , while the red line reported in the same figure is determined

by the values of ζA
S and ζB

S satisfying equation (5.8). Point P, whose coordinates are the solution to
(5.8) and maximize �ζS, is denoted by the yellow dot. It corresponds to the intersection between
the red line and the blue curve, defined in this case through the equation �ζS = 0.589. We note that
this point also coincides with the intersection between the curve (5.8) and the line ζB

S = π − ζA
S .

Consequently, the coordinates ζA
S and ζB

S can be derived as the solution of the system{
�α(ζA

S , ζB
S ) = 0,

ζB
S + ζA

S = π .
(5.9)

By substituting (5.9)2 into (5.9)1, we obtain⎧⎪⎪⎨
⎪⎪⎩

arctan

[
(γ −

√
γ 2 − 1) sin ζA

S

1 − cos ζA
S

]
− arctan

[
(γ +

√
γ 2 − 1) sin(π − ζA

S )

1 − cos(π − ζA
S )

]
+ β(π − 2ζA

S ) = 0,

ζB
S = π − ζA

S .
(5.10)

For the set of physical and geometrical properties assumed in the example, the solution of (5.10) is
ζA

S = 1.278 and ζB
S = 1.863. Using these values in equation (5.5) (or (5.6)), α = 1.692 is determined.
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Figure 10. Widest band gap for a non-canonical cell F3 designed assuming the parameters listed in table 1 and lS/lL =
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√
1/500. (a) Contour plot of the function �ζS(ζ A

S , ζ
B
S ). Red, blue and black lines are associated with equations

�α(ζ A
S , ζ

B
S )= 0, �ζS(ζ A

S , ζ
B
S )= 0.589 and ζ B

S + ζ A
S = π , respectively. (b) Graphic solution of system including

equations (3.9) and (5.13); red, blue and black lines correspond to equations (5.13)1, (5.13)2 and (3.9), respectively; the green
dot is placed at n= 6,m= 10. (Online version in colour.)

Remembering that in this case lS/lL = 1/2 + 3
√

1/500 = 1/β, equation (5.3) provide ζA
L = 0.324 and

ζB
L = 1.246.

We determined the translation coefficient of the flow segment corresponding to the widest
band gap among all those detected in the spectrum of the structure, as well as the coordinates
on T3 of the points A(ζA

S , ζA
L ) and B(ζB

S , ζB
L ), associated with ωA and ωB. A and B are denoted

by red dots in figure 11b, and the width ωB − ωA = 22.066 krad s−1 can be calculated through
equation (5.4). On the basis of the definition (3.6), ωA and ωB are given by

ωA = 1
lS

√
ES

�S
(ζA

S + nπ ) and ωB = 1
lS

√
ES

�S
(ζB

S + nπ ) (5.11)

or, alternatively,

ωA = 1
lL

√
EL

�L
(ζA

L + mπ ) and ωB = 1
lL

√
EL

�L
(ζB

L + mπ ), (5.12)

where n and m are two whole numbers satisfying condition (3.9).
The invariance of T3 and D3 with respect to the transformations (3.5), together with the

conditions A ∈ C−
l and B ∈ C+

l , provides the following system of implicit equations{
η3(ζA

S + nπ , ζA
L + mπ ) = −1,

η3(ζB
S + nπ , ζB

L + mπ ) = −1.
(5.13)

The values of n and m corresponding to the extremes ωA and ωB of the maximal band gap are
given by a pair of integer solutions of system (5.13) that satisfies the relationship (3.9). They
can be found through a diagram like the one reported in figure 10b, where the solutions of
equation (5.13)1 and (5.13)2 correspond to the red and blue contours, respectively, and the black
line is defined by equation (3.9). The green dot denotes the intersection of the three curves at n = 6
and m = 10, which are the required numbers in this case. By substituting them together with the
previously calculated ζA

S , ζB
S , ζA

L , ζB
L and the physical properties of the cell in expressions (5.11)



16

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190240

................................................................

700 750 800 850

–2

–1

0

1

2
(a) (b)

1

2

3

4

5

6

n

A

B

0 0.5 1.0 1.5 2.0 2.5 3.0
0

0.5

1.0

1.5

2.0

2.5

3.0

h3

w (krad s–1)

w A w B

zS

zL
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and (5.12), we finally determine ωA = 759.69 krad s−1 and ωB = 781.76 krad s−1. These extremal
values are highlighted using the red dots in the diagram of the half trace η3 reported in figure 11a.

The illustrated method can be easily applied to cells of higher order through the general
approach developed in [27], where analytical expressions for the boundaries of the band gap
subregions of periodic laminates with an arbitrary number of phases are derived. This original
procedure provides several fundamental advantages with respect to the standard optimization
methods based on the numerical evaluation of the frequency spectrum. This is obvious especially
in the case of non-canonical structures as this is the case where the spectrum is not periodic,
and then, in principle, calculations over an infinite frequency domain should be performed
to determine the widest band gap. Since, in practice, calculations must be truncated, such an
approach yields only an approximate solution. Moreover, there is currently any rigorous way
to predict how the considered truncated subdomain allows an accurate estimation compared
to the real infinite case. Contrarily, through the formulation over the torus T3, the problem is
solved in closed form, without any approximation, avoiding the numerical calculations required
by the evaluation of large portions of the frequency spectrum. It is also worth remarking that the
solutions m and n can be relatively high, at a frequency for which, due to the effects of lateral
inertia, the simple one-dimensional axial model might be no longer valid.

(b) Optimization of the lowest band gap through variation of the geometrical properties
The second example of optimization, which can be formulated rigorously and solved by
exploiting the representation of the spectrum on T3, is here illustrated. Let us consider a cell F3
with parameters listed in table 1, such that γ ≈ 2.125 and the slope of the flow lines becomes
β = lL/lS. Our aim is now to find the value of β that maximize the lowest band gap of the
spectrum.

This one, i.e. {ωB − ωA}, is detected by the intersection between the region D
−
3 and the flow

segment starting from the origin of the plane OζSζL. Similarly to the case studied in §a, A(ζA
S , ζA

L ) ∈
C−

l and B(ζB
S , ζB

L ) ∈ C+
l , and

ζA
L = βζA

S and ζB
L = βζB

S , (5.14)

since α = 0 in this problem. Equation (5.14)1, together with the condition A ∈ C−
l , provides the

following expression for β:

β = 1

ζA
S

arctan

[
(γ −

√
γ 2 − 1) sin ζA

S

1 − cos ζA
S

]
. (5.15)
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Figure 12. Optimization of the lowest band gap for a waveguide designed according to the parameters listed in table 1.
(a) Contour plot of the function �ω(ζ A

S , ζ
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and B. (Online version in colour.)

By substituting (5.15) into (5.14)2 and imposing B ∈ C−
u , we obtain

arctan

[
(γ +

√
γ 2 − 1) sin ζB

S

1 − cos ζB
S

]
− ζB

S

ζA
S

arctan

[
(γ −

√
γ 2 − 1) sin ζA

S

1 − cos ζA
S

]
= 0. (5.16)

Assuming that lS, and then νS, is known, the expression for the width of the band gap (5.2) can be
written in the normalized form

�ω = ωB − ωA

νS
=
√

(ζB
S − ζA

S )2 + (ζB
L − ζA

L )2√
1 + β2

, (5.17)

where β is given by (5.15), ζA
L and ζA

L can be expressed as functions of ζA
S and ζA

S using (5.1).
We now have to determine the values of ζA

S and ζB
S that maximize �ω and are solution of

equation (5.16). The problem is solved graphically using the diagram reported in figure 12a.
The contour plot herein shows the variation of �ω on the whole two-dimensional domain
0 ≤ {ζA

S , ζB
S } ≤ π , while the red line reported in the same figure is the plot of equation (5.16).

Point Q, whose coordinates are the solution of (5.16) and maximize �ω, is denoted by the yellow
dot. It corresponds to the intersection between the red line and the blue contour, the latter
defined through equation �ω = 1.46. For the set of constitutive and geometrical parameters here
considered, we have ζA

S = 1.215 and ζB
S = 2.675. By employing these values in equation (5.1), we

get ζA
L = 0.345 and ζB

L = 0.769, and then, eventually, β = (ζB
L − ζA

L )/(ζB
S − ζA

S ) = 0.284. Therefore,
this solution provides the slope of the flow segment corresponding to the widest lowest band
gap, and its extreme A(ζA

S , ζA
L ) and B(ζA

S , ζA
L ) on the reduced torus T3 are marked with the red

dots in figure 12b. This result is valid for any given value of lL �= 0 which is assumed to be known
for the calculations, and then the optimization procedure does not depend separately on lengths
lS and lL, but only on their ratio β.

The illustrated method provides an exact solution to the problem of the maximization of
the lowest band gap, which is of practical importance in several operative scenarios involving
different types of phononic structures (see, e.g. [31–33]). The formulation over the reduced torus
can be easily extended to the case of an arbitrary cell Fi and represents a promising alternative
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to the direct approach based on partial evaluation of the frequency spectrum evaluation for all
possible ratios lS/lL.

6. Scaling of the band gaps observed on the reduced torus
The universal representation of the spectrum on the reduced torus Ti can be exploited to check
the local scaling occurring between band gaps at determined frequencies, as shown earlier in
[22,23,40] for different types of quasicrystalline phononic structures. Following their approach,
let us identify with Ri = (xi, yi, zi) a point whose coordinates correspond to xi = ηi+2, yi = ηi+1 and
zi = ηi. On the basis of the recursive relation (3.2), the change of point Ri to Ri+1 can be described
as the evolution of the nonlinear discrete map

Ri+1 = T (Ri) = (xi+1, yi+1, zi+1) = (2xiyi − zi, xi, yi). (6.1)

We can easily demonstrate (e.g. [22]) that the invariant

J(ω) = J(ζS(ω), ζL(ω); γ ) = x2
i + y2

i + z2
i − 2xiyizi − 1 = (γ 2 − 1) sin2 ζS(ω) sin2 ζL(ω) (6.2)

is a constant, independent of index i. It is worth noting that J = I/4, where I is the Kohmoto’s
invariant defined in [23].

For any given value of the frequency, and then of the flux variables ζS and ζL, equation (6.2)
defines a manifold whose equation in the continuous three-dimensional space Oxyz is x2 +
y2 + z2 − 2xyz − 1 = J(ω), the so-called Kohmoto’s surface [25]. The points obtained by iterating
map (6.1) are all confined on this surface and describe an open, discrete trajectory. Each
Kohmoto’s surface possesses six saddle points, say ±Pk (k = 1, 2, 3), whose coordinates are ±P1 =
(±2

√
1 + J(ω), 0, 0), ±P2 = (0, ±2

√
1 + J(ω), 0), ±P3 = (0, 0, ±2

√
1 + J(ω)). They are connected

through a closed (periodic) orbit generated by the six-cycle transformation obtained by applying
six times map (6.1), in other words, T 6(Pk) = Pk. Moreover, it can be also verified that T 3(Pk) =
−Pk. The frequencies ωc at which a generic Ri coincides with one of these saddle points are
called canonical frequencies and are exactly midway of the semi-period of the spectrum of
canonical structures [23]. For instance, in the cases addressed in figures 3–5 and 7, the period
is approximately 305 krad s−1 and canonical frequencies are approximately 305/4 krad s−1 and
(3/4) 305 krad s−1.

In the neighbourhood of ωc, the corresponding point Ri locates in the vicinity of a saddle point,
therefore the discrete trajectory traced by transformation of the point Ri itself at an increasing
index on the Kohmoto’s surface is then studied as a small perturbation of the periodic orbit with
map (6.1) linearized about the six saddle points. The derived linearized transformation has an
eigenvalue that is equal to one and an additional pair of them given by

κ±(ω) =
(√

1 + 4(1 + J(ω))2 ± 2(1 + J(ω))
)2

. (6.3)

In both [22,23], it is shown that the quantity κ+(ω) governs the local scaling occurring between
localized ranges of the spectrum of cell Fi and that of Fi+6, while λ ≈ √

κ+ is the scaling factor
between Fi and Fi+3. In particular, across a canonical frequency, the width of a band gap in the
diagram of cell Fi+6 centred at frequency ωc, say {ωV

i+6 − ωU
i+6}, is related to that of {ωV

i − ωU
i } in

the diagram of cell Fi centred at the same frequency by the following scaling law:

ωV
i+6 − ωU

i+6 ≈ ωV
i − ωU

i
κ

, (6.4)

where κ = κ+(ωc). Similarly, the following relationship can be established between the widths of
{ωV

i+3 − ωU
i+3} and {ωV

i − ωU
i }:

ωV
i+3 − ωU

i+3 ≈ ωV
i − ωU

i
λ

. (6.5)
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Figure 13. Half-trace diagrams (left) and flow lines on the domainTi (right) corresponding to Fibonacci rods whose properties
are listed in table 1 with lS/lL = 1. Cells F5 (a,b) and F8 (c,d) are considered. The extremes of the band gap centred at the
canonical frequencyωc = 37.596 krad s−1, that is indicated with a green point, are marked with red points. (Online version in
colour.)

As an example, let us consider Fibonacci canonical cells Fi whose parameters are those in
table 1 (γ ≈ 2.125) and lS/lL = 1 (β = 1). For this class of structures, local scaling governed by (6.4)
and (6.5) at ωc = 37.596 krad s−1 is analysed. The numerical results are illustrated in figure 13,
where the band gap associated with F5 is compared with that corresponding to F8 using close-
up views of both the diagrams η5 and η8 (respectively, (a) and (c)) and the flow lines on the
reduced tori T5 and T8 (respectively, (b) and (d)). The canonical frequency ωc is indicated with
green points and the magenta dot-dashed vertical lines on the left-hand sides, while the extremes
of the band gaps U and V are denoted by the red points on the right. We note also in this case
the perfect correspondence between the band gaps detected through the trace diagrams and the
intersections of the flow lines with the subdomains D5 and D8. Concerning the band gap reported
in figure 13a,b, numerical calculations yield ωV

5 − ωU
5 = 3.407 krad s−1 and λ = 18.12. By using the

relationship (6.5), the value ωV
8 − ωU

8 ≈ (ωV
5 − ωU

5 )/λ = 0.188 krad s−1 is obtained, which is in very
good agreement with the value provided by direct estimation of the band gap highlighted in
figure 13c,d (i.e. ωV

8 − ωU
8 = 0.186 krad s−1). We record the same scaling behaviour by comparing

ωV
5 − ωU

5 with ωV
11 − ωU

11 centred at the same ωc. In this case, the scaling factor is κ = κ+(ωc) =
328.25, the actual range ωV

11 − ωU
11 measures 0.0103 krad s−1, whereas relationship (6.4) provides

ωV
11 − ωU

11 ≈ (ωV
5 − ωU

5 )/κ = 0.0104 krad s−1.
The proposed example demonstrates how, in addition to the standard representation of the

dispersion diagram, the typical scaling properties can be also pinpointed and estimated through
the universal representation of the torus.
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7. Concluding remarks
The characteristic features of the frequency spectrum for elastic waves propagating in a two-phase
periodic medium can be revealed through its universal representation on a two-dimensional
toroidal surface composed of pass band and band gap subregions. Frequency-dependent flow
lines belonging to the surface can be defined for each configuration of the waveguide. In
this paper, we exploited this possibility to investigate axial waves for a class of periodic rods
whose elementary cell is generated through the Fibonacci substitution rule, an example of
quasicrystalline sequence.

First, we have established the mechanical and geometrical conditions for which an elementary
cell of the Fibonacci sequence may display closed flow lines on the torus, a circumstance that
corresponds to the periodicity of the frequency spectrum and of the layout of pass bands and
band gaps. We concluded that the required combination of parameters corresponds to that
leading to the concept of canonical structures introduced by Morini & Gei [23]. For these types of
arrangements, it turned out that the band gap density depends on the lengths of the two phases.
Conversely, for non-canonical rods, the flow lines cover ergodically the torus and their band gap
density is independent of the lengths of the constituents.

Second, we addressed analytically two illustrative band gap optimization problems, based
on element F3 of the Fibonacci sequence. Analytical expressions of the boundaries of band gap
regions on the torus were exploited, on the one hand, to guide the design of the elementary
cell to achieve the widest low-frequency band gap, on the other, to detect the maximal band
gap in the spectrum for a given configuration. Thanks to the availability of the expressions
of the boundaries of the band-gap regions on the torus, the proposed optimization technique
is considerably more robust in comparison with the standard procedure based on the partial
evaluation of the frequency spectrum [31–33], which necessarily relies on numerical algorithms.

In the final section, the local scaling governing the spectrum of quasicrystalline-generated
phononic rods about certain relevant frequencies, as revealed in [23], was investigated and
confirmed through the analysis of the flow lines on the torus.

The presented approach, based on the representation of pass band and band gap sub-regions
on the toroidal manifold, can be easily extended to study other wave phenomena governed by
an equation similar to (2.2) in different periodic systems, i.e. prestressed laminates, photonic
crystals and composite nanostructures. Moreover, through the definition of an appropriate set of
invariants that fully characterize the pass band/band gap layout, similar universality properties
can be detected in spectra associated with different types of equations, such as, for example, those
related to flexural systems [46,47], thin soft dielectric films [48] and plane strain laminates [49].

Data accessibility. This article has no data.
Authors’ contributions. L.M. and Z.G.T. carried out the numerical calculations. L.M. and M.G. performed the data
analysis. L.M., G.S. and M.G. drafted the manuscript. All authors read and approved the manuscript.
Competing interests. The authors declare that they have no competing interests.
Funding. L.M. and M.G. were funded by the European Union’s Horizon 2020 research and innovation
programme under Marie Sklodowska-Curie Actions COFUND grant SIRCIW, agreement no. 663830.
G.S. was supported from ISF (grant no. 1912/15) and BSF (grant no. 2014358).
Acknowledgements. The authors gratefully acknowledge Dr Ram Band, Department of Mathematics, Technion-
Israel Institute of Technology, for their insightful discussions on the research topic of the paper.

References
1. Nieves MJ, Mishuris GS, Slepyan LI. 2017 Transient waves in a transformable periodic flexural

structure. J. Mech. Phys. Solids 112, 185–208. (doi:10.1016/j.ijsolstr.2016.11.012)
2. Brun M, Slepyan LI, Movchan AB. 2013 Transition wave in a supported heavy beam. J. Mech.

Phys. Solids 61, 2067–2085. (doi:10.1016/j.jmps.2013.05.004)
3. Slepyan LI, Cherkaev A, Cherkaev E. 2005 Transition waves in bistable structures. II.

Analytical solution: wave speed and energy dissipation. J. Mech. Phys. Solids 53, 407–436.
(doi:10.1016/j.jmps.2004.08.001)

http://dx.doi.org/doi:10.1016/j.ijsolstr.2016.11.012
http://dx.doi.org/doi:10.1016/j.jmps.2013.05.004
http://dx.doi.org/doi:10.1016/j.jmps.2004.08.001


21

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190240

................................................................

4. Cherkaev A, Cherkaev E, Slepyan LI. 2005 Transition waves in bistable structures. I.
Delocalization of damage. J. Mech. Phys. Solids 53, 383–405. (doi:10.1016/j.jmps.2004.08.002)

5. Slepyan LI. 2010 Dynamic crack growth under Rayleigh wave. J. Mech. Phys. Solids 58, 636–655.
(doi:10.1016/j.jmps.2010.03.003)

6. Mishuris GS, Movchan LI, Slepyan AB. 2009 Localised knife waves in a structured interface.
J. Mech. Phys. Solids 57, 1958–1979. (doi:10.1016/j.jmps.2009.08.004)

7. Slepyan LI. 2001 Feeding and dissipative waves in fracture and phase transition. III.
Triangular-cell lattice. J. Mech. Phys. Solids 49, 2839–2875. (doi:10.1016/S0022-5096(01)00053-9)

8. Slepyan LI. 2001 Feeding and dissipative waves in fracture and phase transition. II. Phase-
transition waves. J. Mech. Phys. Solids 49, 513–550. (doi:10.1016/S0022-5096(00)00083-1)

9. Slepyan LI. 2001 Feeding and dissipative waves in fracture and phase transition.
I. Some 1D structures and a square-cell lattice. J. Mech. Phys. Solids 49, 469–511.
(doi:10.1016/S0022-5096(00)00064-8)

10. Slepyan LI, Krylov V, Rosenau P. 1998 Solitary waves in flexible, arbitrary elastic helix. J. Eng.
Mech. 124, 966–970. (doi:10.1061/(ASCE)0733-9399(1998)124:9(966))

11. Krylov V, Parnes R, Slepyan LI. 1998 Nonlinear waves in an inextensible flexible helix. Wave
Motion 27, 117–136. (doi:10.1016/S0165-2125(97)00045-0)

12. Ewing MW, Jardetzky WS, Press F. 1956 Elastic waves in layered media. New York, NY: McGraw-
Hill.

13. Nemat-Nasser S. 1972 Harmonic wave propagation in layered composites. J. Appl. Mech. 39,
850–852. (doi:10.1115/1.3422814)

14. Mead DM. 1998 Passive vibration control. Chichester, UK: Wiley.
15. Mead DM. 1998 Wave propagation in continuous periodic structures: research contributions

from Southampton, 1964–1995. J. Sound Vibr. 190, 495–524. (doi:10.1006/jsvi.1996.0076)
16. Guenneau S, Movchan AB, Petursson G, Ramakrishna SA. 2007 Acoustic metamaterials for

sound focusing and confinement. New J. Phys. 9, 399. (doi:10.1088/1367-2630/9/11/399)
17. Brun M, Guenneau S, Movchan AB, Bigoni D. 2010 Dynamics of structural interfaces:

filtering and focussing effects for elastic waves. J. Mech. Phys. Solids 58, 1212–1224.
(doi:10.1016/j.jmps.2010.06.008)

18. Norris AN. 2008 Acoustic cloaking theory. Proc. Roy. Soc. A 464, 2411–2434.
(doi:10.1098/rspa.2008.0076)

19. Colquitt DJ, Brun M, Gei M, Movchan AB, Movchan NV, Jones IS. 2014 Transformation
elastodynamics and cloaking for flexural waves. J. Mech. Phys. Solids 72, 131–143.
(doi:10.1016/j.jmps.2014.07.014)

20. Srivastava A. 2016 Metamaterial properties of periodic laminates. J. Mech. Phys. Solids 96,
252–263. (doi:10.1016/j.jmps.2016.07.018)

21. Willis JR. 2016 Negative refraction in a laminate. J. Mech. Phys. Solids 97, 10–18.
(doi:10.1016/j.jmps.2015.11.004)

22. Gei M. 2010 Wave propagation in quasiperiodic structures, stop/pass band distribution and
prestress effects. Int. J. Solids Struct. 47, 3067–3075. (doi:10.1016/j.ijsolstr.2010.07.008)

23. Morini L, Gei M. 2018 Waves in one-dimensional quasicrystalline structures: dynamical
trace mapping, scaling and self-similarity of the spectrum. J. Mech. Phys. Solids 119, 83–103.
(doi:10.1016/j.jmps.2018.06.007)

24. Poddubny AN, Ivchenko EL. 2010 Photonic quasicrystalline and aperiodic structures. Physica
E 43, 1871–1895. (doi:10.1016/j.physe.2010.02.020)

25. Kohmoto M, Oono Y. 1984 Cantor spectrum for an almost periodic Schrodinger equation and
a dynamical map. Phys. Lett. 102A, 145–148. (doi:10.1016/0375-9601(84)90928-9)

26. Shmuel G, Band R. 2016 Universality of the frequency spectrum of laminates. J. Mech. Phys.
Solids 92, 127–136. (doi:10.1016/j.jmps.2016.04.001)

27. Lustig B, Shmuel G. 2018 On the band gap universality of multiphase laminates and its
applications. J. Mech. Phys. Solids 117, 37–53. (doi:10.1016/j.jmps.2018.04.008)

28. Barra F, Gaspard P. 2000 On the level spacing distribution in quantum graphs. J. Stat. Phys.
101, 283–319. (doi:10.1023/A:1026495012522)

29. Berkolaiko G, Winn B. 2010 Relationship between scattering matrix and spectrum of quantum
graphs. Trans. Am. Mat. Soc. 362, 6261–6277. (doi:10.1090/S0002-9947-2010-04897-4)

30. Band R, Berkolaiko G. 2013 Universality of the momentum band density of periodic networks.
Phys. Rev. Lett. 111, 130404. (doi:10.1103/PhysRevLett.111.130404)

http://dx.doi.org/doi:10.1016/j.jmps.2004.08.002
http://dx.doi.org/doi:10.1016/j.jmps.2010.03.003
http://dx.doi.org/doi:10.1016/j.jmps.2009.08.004
http://dx.doi.org/doi:10.1016/S0022-5096(01)00053-9
http://dx.doi.org/doi:10.1016/S0022-5096(00)00083-1
http://dx.doi.org/doi:10.1016/S0022-5096(00)00064-8
http://dx.doi.org/doi:10.1061/(ASCE)0733-9399(1998)124:9(966)
http://dx.doi.org/doi:10.1016/S0165-2125(97)00045-0
http://dx.doi.org/doi:10.1115/1.3422814
http://dx.doi.org/doi:10.1006/jsvi.1996.0076
http://dx.doi.org/doi:10.1088/1367-2630/9/11/399
http://dx.doi.org/doi:10.1016/j.jmps.2010.06.008
http://dx.doi.org/doi:10.1098/rspa.2008.0076
http://dx.doi.org/doi:10.1016/j.jmps.2014.07.014
http://dx.doi.org/doi:10.1016/j.jmps.2016.07.018
http://dx.doi.org/doi:10.1016/j.jmps.2015.11.004
http://dx.doi.org/doi:10.1016/j.ijsolstr.2010.07.008
http://dx.doi.org/doi:10.1016/j.jmps.2018.06.007
http://dx.doi.org/doi:10.1016/j.physe.2010.02.020
http://dx.doi.org/doi:10.1016/0375-9601(84)90928-9
http://dx.doi.org/doi:10.1016/j.jmps.2016.04.001
http://dx.doi.org/doi:10.1016/j.jmps.2018.04.008
http://dx.doi.org/doi:10.1023/A:1026495012522
http://dx.doi.org/doi:10.1090/S0002-9947-2010-04897-4
http://dx.doi.org/doi:10.1103/PhysRevLett.111.130404


22

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190240

................................................................

31. Sigmund O, Sondergaard Jensen J. 2003 Systematic design of phononic band-gap materials
and structures by topology optimization. Phil. Trans. R. Soc. Lond. A 361, 1001–1019.
(doi:10.1098/rsta.2003.1177)

32. Liu Z-F, Wu B, He C-F. 2014 Band-gap optimization in two-dimensional phononic
crystals based on genetic algorithm and FPWE. Waves Rand. Compl. Media 24, 286–305.
(doi:10.1080/17455030.2014.901582)

33. Hedayatrasa S, Abhary K, Uddin M-S, Guest JK. 2016 Optimal design of tunable
phononic bandgap plates under equibiaxial stretch. Smart Mat. Struct. 25, 055025.
(doi:10.1088/0964-1726/25/5/055025)

34. Kolar M, Ali MK. 1989 Generalized Fibonacci superlattices, dynamical trace maps, and
magnetic excitations. Phys. Rev. B 39, 426–432. (doi:10.1103/PhysRevB.39.426)

35. Kolar M. 1993 New class of one dimensional quasicrystals. Phys. Rev. B 47, 5498–5492.
(doi:10.1103/PhysRevB.47.5489)

36. Steurer W. 2004 Twenty years of structure research on quasicrystals. Part I. Pentagonal,
octagonal, decagonal and dodecagonal quasicrystals. Acta Crystals 219, 391–446.
(doi:10.1524/zkri.219.7.391.35643)

37. Steurer W, Deloudi S. 2008 Fascinating quasicrystals. Acta Cryst. A64, 1–11.
38. Lekner J. 1994 Light in periodically stratified media. J. Opt. Soc. Am. A 11, 2892–2899.

(doi:10.1364/JOSAA.11.002892)
39. Rytov SM. 1956 Acoustical properties of a thinly laminated medium. Sov. Phys. Acoust. 2,

68–80.
40. Morini L, Eyzat Y, Gei M. 2019 Negative refraction in quasicrystalline multilayered

metamaterials. J. Mech. Phys. Solids 124, 282–298. (doi:10.1016/j.jmps.2018.10.016)
41. Arnold VI. 1989 Mathematical methods of classical mechanics. New York, NY: Springer-Verlag.
42. Kohmoto M, Sutherland B, Tang C. 1987 Critical wave functions and a Cantor-

set spectrum of a one-dimensional quasicrystal model. Phys. Rev. B 35, 1020–1033.
(doi:10.1103/PhysRevB.35.1020)

43. Sutherland B, Kohmoto M. 1987 Resistance of a one-dimensional quasicrystal: power-law
growth. Phys. Rev. B 36, 5877–5886. (doi:10.1103/PhysRevB.36.5877)

44. Katok A, Hasselblatt B. 1996 Introduction to the modern theory of dynamical systems. Cambridge,
UK: Cambridge University Press.

45. Ott E. 1993 Chaos in dynamical systems. Cambridge, UK: Cambridge University Press.
46. Romeo F, Luongo A. 2002 Invariant representation of propagation properties for bi-coupled

periodic structures. J. Sound Vib. 257, 869–886. (doi:10.1006/jsvi.2002.5065)
47. Carta G, Brun M. 2015 Bloch–Floquet waves in flexural systems with continuous and discrete

elements. Mech. Mat. 87, 11–26. (doi:10.1016/j.mechmat.2015.03.004)
48. Shmuel G, Pernas-Salomon R. 2016 Manipulating motions of elastomer films by

electrostatically-controlled aperiodicity. Smart Mater. Struct. 25, 125012. (doi:10.1088/0964-
1726/25/12/125012)

49. Chen A-L, Wang Y-S, Guo Y-F, Wang Z-D. 2008 Band structures and Fibonacci phononic
quasicrystals. Solid State Comm. 145, 103–108. (doi:10.1016/j.ssc.2007.10.023)

http://dx.doi.org/doi:10.1098/rsta.2003.1177
http://dx.doi.org/doi:10.1080/17455030.2014.901582
http://dx.doi.org/doi:10.1088/0964-1726/25/5/055025
http://dx.doi.org/doi:10.1103/PhysRevB.39.426
http://dx.doi.org/doi:10.1103/PhysRevB.47.5489
http://dx.doi.org/doi:10.1524/zkri.219.7.391.35643
http://dx.doi.org/doi:10.1364/JOSAA.11.002892
http://dx.doi.org/doi:10.1016/j.jmps.2018.10.016
http://dx.doi.org/doi:10.1103/PhysRevB.35.1020
http://dx.doi.org/doi:10.1103/PhysRevB.36.5877
http://dx.doi.org/doi:10.1006/jsvi.2002.5065
http://dx.doi.org/doi:10.1016/j.mechmat.2015.03.004
http://dx.doi.org/doi:10.1088/0964-1726/25/12/125012
http://dx.doi.org/doi:10.1088/0964-1726/25/12/125012
http://dx.doi.org/doi:10.1016/j.ssc.2007.10.023

	Introduction
	Waves in quasicrystalline-generated phononic rods
	Universal structure of the frequency spectrum
	Analysis of the flow lines on the reduced torus
	Band gap optimization using universality properties
	Identification of the widest band gap for a prescribed structure
	Optimization of the lowest band gap through variation of the geometrical properties

	Scaling of the band gaps observed on the reduced torus
	Concluding remarks
	References



