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A B S T R A C T

Soft materials with engineered microstructure support nonlinear waves which can be harnessed for various
applications, from signal communication to impact mitigation. Such waves are governed by nonlinear coupled
differential equations whose analytical solution is seldom trackable, hence emerges the need for suitable
numerical solvers. Based on a finite-volume method in one space dimension, we here develop a designated
scheme for nonlinear waves with two coupled components that propagate in soft laminates. We apply our
scheme to a periodic laminate made of two alternating compressible Gent layers, and consider two cases. In
one case, we analyze a motion whose component along the lamination direction is coupled to a component in
the layers plane, and discover vector solitary waves in a continuum medium. In the second case, we analyze
a motion with two coupled components in the plane of the layers, and observe a train of linearly polarized
solitary waves, followed by a single circularly polarized wave. The framework we developed offers a platform
for further investigation of these waves and their extension to higher dimensional problems.

1. Introduction

Highly deformable materials with architectured microstructure are
nowadays accessible by virtue of the current manufacturing abilities [1,
2]. These materials exhibit geometrical and constitutive nonlinearities
that give rise to rich physics [3], and in particular diverse wave phe-
nomena such as unidirectional transmission, shocks and self-reinforcing
waves [4–9]. Waves in nonlinear solids have recently regained sci-
entific and technological interest, owing to the realization that their
features can be harnessed for various applications, such as signal
transmission [10], impact mitigation [11], energy harvesting [12] and
mechanical diodes [13].

The mathematical modeling of waves in nonlinear solids with mi-
crostructure is given by nonlinear coupled partial differential equa-
tions, whose analytical solution is seldom trackable [14–17], hence the
need for designated numerical solvers. Notably, these solvers should
account for the fact that when the deformations are large there is
a distinction between the reference and current configuration space,
where the finite-strain Lagrangian formulation [18–20] allows for this
distinction. Among the different schemes developed for nonlinear La-
grangian elastodynamics, we recall those based on the finite differ-
ence method [21], finite element method [22], and specifically the
finite-volume method [23].

Finite-volume methods are useful in solving problems whose physics
is governed by space–time conservation laws [24–26], and as such
are useful in elastodynamics [27]. Importantly, these methods are
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conservative in a way that emulates the exact solution—a useful feature
in problems whose solution is discontinuous [27,28]. Based on the
solution of a Riemann problem at the interface between grid cells,
LeVeque [29] developed a general high-resolution scheme for nonlinear
hyperbolic systems which depend on multiple space dimensions and are
not in conservation form. Such a deviation from the conservation form
can occur when the medium is heterogeneous—the type of medium
we focus on in this work, giving rise to a spatially-varying flux. The
application of finite-volume algorithms based on solutions of Riemann
problems has been extended to thermoelastic materials [30], elasto-
plastic materials [31], and materials that exhibit softening [23], among
other media.

Fogarty and LeVeque [32] have demonstrated the efficiency of
Leveque’s approach in different problems of acoustic waves and one-
and two-dimensional heterogeneous linear media. The term acoustic
denotes waves in media that cannot sustain shear, hence corresponds
to pressure (compression) waves alone. In the periodic case, they
have also refined the method using a new limiter function—a scalar
function aimed at limiting the gradient of the solution near discontinu-
ities—relatively to the one used by LeVeque [29]. Later on, LeVeque
[33] and Bale et al. [34] have adapted the approach to pressure
waves in one- and two-dimensional nonlinear heterogeneous media,
by decomposing the flux difference at the interface between grid cells.
This is in contrast with the standard approach that decomposes the
conserved vector. These works revealed solitary waves, namely, non-
linear waves that are able to maintain constant speed and profile by
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virtue of a balance between nonlinear and dispersive features of the
system [35,36]. These one-dimensional elastic solitary waves were later
studied in greater detail by LeVeque and Yong [37,38]; see also the
works of Engelbrecht et al. [39] and Xu et al. [40].

Here, we extend the flux-based wave decomposition scheme of LeV-
eque [33] and Bale et al. [34] to nonlinear elastic heterogeneous media
exhibiting coupled finite-amplitude waves. In contrast with acoustics
where there is only volumetric waves and the only stress component
is in the propagation direction, in elastodynamics there are also shear
waves which may couple with volumetric waves, and yield traction
components in the plane transverse to the propagation direction [41].
The media of interest are composites made of soft layers, where the
component of the deformation in the lamination direction (referred to
as the axial component) is coupled with a transverse component in the
plane of the layers [14]. We also consider a second case in which two
components in the layers plane are coupled one with the other [42],
i.e., the coupling of two shear waves. By developing of a suitable
matrix representation, our extension accounts for the generation of such
additional waves and their coupling. To the best of our knowledge,
while finite-volume schemes have been developed for two-dimensional
nonlinear elastodynamics, e.g., by Berjamin et al. [43], the case of
spatially-varying flux in that setting has yet to be explicitly addressed.1

We validate our method using two test cases. In the first test,
we consider one layer bounded between two semi-infinite layers with
different parameters, and note that these layers respond nonlinearly
to finite-amplitude deformations. We subject the middle layer to an
initial small-amplitude shear strain and show that the numerical so-
lution captures the response as predicted by the analytical solution
of the limiting linear problem [44]. The second test is of nonlinear
waves and hence more challenging, where we address the canonical
problem of wave scattering at an interface between two nonlinearly
elastic half-spaces; here, however, the waves are of finite-amplitude and
the displacements are coupled. The aspect of shock evolution in this
setting was addressed by Davison [45], who studied axial waves. Here,
we extend the settings to shocks associated with waves comprising
two coupled components, noting that to the best of our knowledge
this is the first numerical experiment of such problems. An analytical
solution to this problem is not available, and hence our finite-volume
based solution to the linearized algebraic equations is compared with
numerical solutions using Newton’s method to the exact nonlinear
equations, to find an excellent agreement. The model we use to describe
the nonlinear response of the media in our test cases is the compress-
ible Gent model [46]. This model—originally developed for capturing
the strain stiffening of rubber at large strains—was recently shown
useful by Ziv and Shmuel [7] for modeling shear shocks that were
experimentally observed by Catheline et al. [47] and Espíndola et al.
[48],2 and modeling tensile-induced shocks that were experimentally
observed by Niemczura and Ravi-Chandar [49].

Subsequently, we apply our scheme to a pre-strained laminate made
of two alternating compressible Gent layers. Remarkably, in the case
where the axial and transverse components of the motion are coupled,
our numerical solution reveals a generation of elastic vector solitary
waves. As mentioned, solitary waves are nonlinear waves that propa-
gate with constant speed and profile by virtue of a balance between
nonlinearity and dispersion in the system. The term vector refers to the
case where these solitary waves consist of two (or more) components
and polarizations that are coupled one with the other [50,51]. To the
best of our knowledge, our results are the first report of vector solitary

1 While the setting of Berjamin et al. [43] is two-dimensional nonlinear
elastodynamics, the numerical method they provide when the coefficients are
spatially-varying is for the one-dimensional case (Appendix B therein).

2 We clarify that it is the stiffening of these media—not their nearly-
incompressible nature—that leads to the formation of shocks. Therefore, the
both compressible [7] and incompressible [17] Gent models are capable of
capturing shear shocks.

waves in an elastic continuum, based on the equations of nonlinear
elastodynamics. Our observation is preceded by the first construction
of vector solitary waves in discrete mechanical systems that were con-
ceived by Deng et al. [52,53]. There, the model is a periodic repetition
of rigid squares that are interlinked by springs, thereby supporting
transitional and rotational waves. Interestingly, while these mechanical
waves are slower at higher amplitudes, the vector solitary waves in our
continuum laminated medium are faster at higher amplitudes, similarly
to the KdV solitons and the solitary waves analyzed by LeVeque and
Yong [38], as we show in what follows.

In the second case where the coupling is between two transverse
components, we discover the propagation of (scalar) solitary waves that
are linearly polarized, namely, their polarization direction is fixed. We
also observe the propagation of a single slower wave which is circularly
polarized, namely, its direction rotates in the transverse plane.

Our results are presented in the following order. Section 2 summa-
rizes the equations governing motions with two coupled components in
laminates made of compressible Gent layers, together with the deriva-
tion of the Gent phase velocities in each case. Section 3 details our
finite-volume method for the solution of these equations. The validation
of our method using the two test cases is provided in Section 4,
and the numerical experiments of coupled motions in periodic Gent
layers is carried out in Section 5. We summarize our main results and
conclusions in Section 6, together with an outlook towards future work.

2. Governing equations

We use the standard governing equations in Lagrangian continuum
mechanics to formulate the problem of interest, see, e.g., the books
of Ogden [54] and Bonet and Wood [55]. We consider a soft composite
made of two perfectly bonded alternating hyperelastic phases that are
laminated in the 𝑋1 direction. The layers are infinite in the 𝑋2 and 𝑋3
directions; the loads in these directions are assumed to be uniform, and
hence the response of the laminate is only a function of 𝑋1. We denote
the initial thickness, mass density and strain energy density function of
layer 𝑛 by 𝐻 (𝑛), 𝜌(𝑛)𝐿 and 𝛹 (𝑛). In the numerical simulations to follow,
we will use the compressible3 Gent energy function [46,56] to model
the phases, given by

𝛹 (𝑛) (𝐅) = −
𝜇(𝑛)𝐽 (𝑛)

𝑚
2

ln

(

1 − tr𝐅T𝐅 − 3
𝐽 (𝑛)
𝑚

)

− 𝜇(𝑛) ln det𝐅

+

(

𝜅(𝑛)

2
−

𝜇(𝑛)

3
−

𝜇(𝑛)

𝐽 (𝑛)
𝑚

)

(det𝐅 − 1)2 , (1)

where 𝐅 is the deformation gradient (to be defined formally later),
𝜇(𝑛) and 𝜅(𝑛) correspond to the shear and bulk moduli in the limit of
small strains, respectively, and 𝐽 (𝑛)

𝑚 models the strain stiffening that
rubber exhibits due to the limited extensibility of its polymer chains.
In the limit 𝐽𝑚 → ∞, the Gent model reduces to the fundamental neo-
Hookean model [57]. The motion of the composite is described in terms
of 𝝌 : a continuous and twice differentiable function (except at material
interfaces), which maps material points from their initial position 𝐗 to
their current position 𝐱 at time 𝑡, such that 𝐱 = 𝝌 (𝐗, 𝑡). As mentioned,
we focus on deformations that are only functions of 𝑋1, namely,

𝑥1 = 𝑋1 + 𝑢1
(

𝑋1, 𝑡
)

, 𝑥2 = 𝑋2 + 𝑢2
(

𝑋1, 𝑡
)

, 𝑥3 = 𝑋3 + 𝑢3
(

𝑋1, 𝑡
)

, (2)

where 𝑢𝑖 are the components of the displacement field. The problem
thus amounts to determining 𝑢𝑖

(

𝑋1, 𝑡
)

for a given set of boundary
and initial conditions. This requires satisfying balance laws for the
corresponding first Piola–Kirchhoff stress tensor 𝐏 = ∇𝐅𝛹 , where 𝐅 =

3 For completeness, we note that in the incompressible limit (det𝐅 ≡ 1),
the kinematic constraint is handled using the addition of a Lagrange
multiplier [54,55].
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∇𝐗𝝌 is the deformation gradient. For the compressible Gent model, the
𝐅-gradient yields

𝐏 = 𝜇
(

1 − tr𝐅T𝐅 − 3
𝐽𝑚

)−1
𝐅+

(

𝜅 −
2𝜇
𝐽𝑚

−
2𝜇
3

)

det𝐅 (det𝐅 − 1)𝐅−T−𝜇𝐅−T.

(3)

It is worth highlighting now what are the nonlinearities in the Cauchy
stress 𝜎 = (det𝐅)−1 𝐏𝐅𝖳 that emerge when employing the Gent model.
First, it has a term proportional to 𝐅𝐅𝖳, hence does not neglect
quadratic terms in the components of the displacement gradient, in
contrast with linear elasticity. Secondly, the coefficient4 that multiplies
𝐅𝐅𝖳 is also a nonlinear function of the deformation, in contrast with the
Hookean and neo-Hookean models, where this coefficient is constant.
These nonlinearities play a crucial role in evolution of nonlinear waves.
Smooth nonlinear waves are solutions to the Lagrangian equations of
motion

∇𝐗 ⋅ 𝐏 = 𝜌𝐿𝝌 ,𝑡𝑡, (4)

as discussed later. For the mapping of interest (2), Eq. (4) reduces to

𝑃𝑖1,1 = 𝜌𝐿
𝜕2𝑢𝑖
𝜕𝑡2

, 𝑖 = 1, 2, 3. (5)

Focusing on motions in which either 𝑢1 ≡ 0 or 𝑢3 ≡ 0, we rewrite Eq. (5)
as

𝑢1 ≡ 0 ∶ 𝑃21,1 = 𝜌𝐿
𝜕2𝑢2
𝜕𝑡2

, 𝑃31,1 = 𝜌𝐿
𝜕2𝑢3
𝜕𝑡2

; (6a,b)

𝑢3 ≡ 0 ∶ 𝑃11,1 = 𝜌𝐿
𝜕2𝑢1
𝜕𝑡2

, 𝑃21,1 = 𝜌𝐿
𝜕2𝑢2
𝜕𝑡2

. (6c,d)

Physically, 𝑢1 ≡ 0 corresponds to a transverse motion in the plane
perpendicular to 𝑋1 (Fig. 1b), whereas 𝑢3 ≡ 0 corresponds to coupled
axial and transverse motions (Fig. 1c). We can analyze the two cases
together using a unifying equation by replacing the first index of 𝐏 in
Eqs. (6)a and (6)c by 𝑎 and in Eqs. (6)b and (6)d by 𝑏, and writing

𝑃𝑎1,1 = 𝜌𝐿
𝜕2𝑢𝑎
𝜕𝑡2

, 𝑃𝑏1,1 = 𝜌𝐿
𝜕2𝑢𝑏
𝜕𝑡2

, (7)

where we recall that 𝜌𝐿 is a piecewise-constant function that varies
between phases, while 𝑢𝑖 and 𝑃𝑖1 are continuous functions.5 We denote
the spatial and temporal derivatives of 𝑢𝑖 by

𝜖𝑖 ∶=
𝜕𝑢𝑖
𝜕𝑋1

, 𝑣𝑖 ∶=
𝜕𝑢𝑖
𝜕𝑡

, 𝑖 = 𝑎, 𝑏, (8)

and put Eq. (7) in the form

⎛

⎜

⎜

⎜

⎜

⎝

𝜖𝑎
𝜖𝑏

𝜌𝐿𝑣𝑎
𝜌𝐿𝑣𝑏

⎞

⎟

⎟

⎟

⎟

⎠,𝑡

+

⎛

⎜

⎜

⎜

⎜

⎝

−𝑣𝑎
−𝑣𝑏
−𝑃𝑎1
−𝑃𝑏1

⎞

⎟

⎟

⎟

⎟

⎠,𝑋1

=

⎛

⎜

⎜

⎜

⎜

⎝

0
0
0
0

⎞

⎟

⎟

⎟

⎟

⎠

, (9)

By applying the chain rule, we obtain

⎛

⎜

⎜

⎜

⎜

⎝

𝜖𝑎
𝜖𝑏

𝜌𝐿𝑣𝑎
𝜌𝐿𝑣𝑏

⎞

⎟

⎟

⎟

⎟

⎠,𝑡

+

⎛

⎜

⎜

⎜

⎜

⎝

0 0 − 1
𝜌𝐿

0

0 0 0 − 1
𝜌𝐿

−𝛼 −𝛽 0 0
−𝛾 −𝛿 0 0

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

𝜖𝑎
𝜖𝑏

𝜌𝐿𝑣𝑎
𝜌𝐿𝑣𝑏

⎞

⎟

⎟

⎟

⎟

⎠,𝑋1

=

⎛

⎜

⎜

⎜

⎜

⎝

0
0
0
0

⎞

⎟

⎟

⎟

⎟

⎠

, (10)

where

𝛼 =
𝜕𝑃𝑎1
𝜕𝜖𝑎

, 𝛽 =
𝜕𝑃𝑎1
𝜕𝜖𝑏

, 𝛾 =
𝜕𝑃𝑏1
𝜕𝜖𝑎

, 𝛿 =
𝜕𝑃𝑏1
𝜕𝜖𝑏

, (11)

4 Note that the coefficient that multiplies the hydrostatic part is also a
nonlinear function of the deformation.

5 The continuity of 𝑃𝑖1 results from the standard application of the balance
of linear momentum in its integral form at the reference configuration near
material interfaces, and 𝑢𝑖 are continuous there since the layer are perfectly
bonded.

and for later use, we denote the matrix in Eq. (10) by 𝖦. When
specialized to the compressible Gent model and the case 𝑢1 ≡ 0, the
Piola components required for calculating Eq. (11) are

𝑃21 = 𝜇𝜖2

(

1 −
𝜖22 + 𝜖23
𝐽𝑚

)−1

,

𝑃31 = 𝜇𝜖3

(

1 −
𝜖22 + 𝜖23
𝐽𝑚

)−1

,

(12)

where when 𝑢3 ≡ 0 the components are

𝑃11 = 𝜇
(

𝜖1 + 1
)

(

1 −
𝜖21 + 𝜖22 + 2𝜖1

𝐽𝑚

)−1

+
(

𝜅 −
2𝜇
𝐽𝑚

−
2𝜇
3

)

𝜖1 −
𝜇

𝜖1 + 1
,

𝑃21 = 𝜇𝜖2

(

1 −
𝜖21 + 𝜖22 + 2𝜖1

𝐽𝑚

)−1

.

(13)

The eigenvalues of Eq. (10) are the following characteristic wave
velocities in the material

𝑐 = ±

√

1
2𝜌𝐿

[

𝛼 + 𝛿 ±
√

(𝛼 − 𝛿)2 + 4𝛽𝛾
]

=∶ ±𝑐±, (14)

where 𝑐+ and 𝑐− correspond to the plus and minus sign of the inner
square root, respectively. Eq. (10) is hyperbolic when 𝑐± are real, i.e.,
when the conditions

𝛼 + 𝛿 −
√

(𝛼 − 𝛿)2 + 4𝛽𝛾 > 0, (𝛼 − 𝛿)2 + 4𝛽𝛾 > 0, (15)

are satisfied [14]. The compressible Gent model satisfies conditions
(15) for all its admissible strains before the ‘‘lock-up’’

(

tr𝐅T𝐅 − 3 < 𝐽𝑚
)

,
hence Eq. (10) is suitable for numerical solutions based on finite-
volume methods [27].

In the case of coupled axial and transverse displacements, the
explicit expressions for the velocities of the compressible Gent model
are

𝑐2± =
𝑑3
2𝜌𝐿

+
𝜇

2𝜌𝐿𝑑21
+

(

𝑑21 + 𝜖22 + 𝐽𝑚
)

𝜇𝐽𝑚
2𝜌𝐿𝑑22

±

√

48𝑑61𝜇
2𝜖22𝐽

2
𝑚 +

(

𝑑21𝑑
2
2𝑑3 + 2𝑑41𝜇𝐽𝑚 − 2𝑑21𝜖

2
2𝜇𝐽𝑚 + 𝑑22𝜇

)

2

2
√

3𝜌𝐿𝑑22𝑑
2
1

, (16)

where

𝑑1 = 𝜖1 + 1, 𝑑2 = 𝜖21 + 2𝜖1 + 𝜖22 − 𝐽𝑚, 𝑑3 = 𝜅 −
2𝜇
3

−
2𝜇
𝐽𝑚

. (17)

In this case, the slower velocity 𝑐− is a monotonically increasing
function of the strains, and the corresponding wave is referred to
as genuinely nonlinear. The faster velocity 𝑐+ has local minima at
certain strains [7], and hence the corresponding wave is not genuinely
nonlinear. In the following sections we focus on strains far from these
local minima, such that this mode can be considered genuinely non-
linear. The fact that the velocities are nonlinear functions of the strain
components allows the formation of shocks under certain conditions;
this formation is the focus of previous works [7,17] and the relevant
conditions are briefly discussed in the Appendix. In the limit of linear
elasticity, 𝑐− and 𝑐+ associated with Eq. (6c,d) correspond to the
velocities of shear and pressure waves, respectively.

Collins [42] showed that coupled transverse deformations with
finite amplitude associated with Eq. (6a,b) propagate in isotropic media
as a combination of circularly polarized waves with the velocity 𝑐− and
linearly polarized waves with the velocity 𝑐+. This nature of motion is
revealed using the transformation

𝜖2 = 𝜖𝑇 cos 𝜃, 𝜖3 = 𝜖𝑇 sin 𝜃, (18)

which decouples the waves such that 𝜖𝑇 and 𝜃 are constants across
waves propagating with the velocities 𝑐− and 𝑐+, respectively. In other

3
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Fig. 1. (a) Reference configuration of a representative phase. (b) Illustrative deformation when 𝑢1 ≡ 0, and (c) 𝑢3 ≡ 0.

words, the circularly polarized wave is characterized by a fixed strain
and rotating polarization, where for the linearly polarized wave the
polarization is fixed and the strain magnitude varies. The corresponding
velocities in a compressible Gent material are

𝑐−=
√

𝜇𝐽𝑚
𝜌𝐿

(

𝐽𝑚 − 𝜖2𝑇
) , 𝑐+ =

√

√

√

√

√

𝜇𝐽𝑚
(

𝐽𝑚 + 𝜖2𝑇
)

𝜌𝐿
(

𝐽𝑚 − 𝜖2𝑇
)2

, (19)

respectively. Note that 𝑐− is constant since 𝜖𝑇 is a constant too. Hence,
circularly polarized waves are effectively propagating as linear waves,
and are referred to as linearly degenerate [27]. By contrast, the quantity
𝜖𝑇 varies for linearly polarized waves, hence their velocity 𝑐+ is a non-
linear function of the strain measure. Specifically, it is a monotonically
increasing function of 𝜖𝑇 , and therefore the linearly polarized mode is
genuinely nonlinear.

In the subsequent sections we formulate a finite-volume method for
layered materials governed by Eq. (10), validate it using two bench-
mark problems, and apply it in a numerical experiment of coupled
waves in nonlinear laminates.

3. The finite-volume method

First, we define the conserved vector 𝗊 and its flux vector 𝖿 accord-
ing to

𝗊 ∶=

⎛

⎜

⎜

⎜

⎜

⎝

𝜖𝑎
𝜖𝑏

𝜌𝐿𝑣𝑎
𝜌𝐿𝑣𝑏

⎞

⎟

⎟

⎟

⎟

⎠

, 𝖿 ∶= −

⎛

⎜

⎜

⎜

⎜

⎝

𝑣𝑎
𝑣𝑏
𝑃𝑎1
𝑃𝑏1

⎞

⎟

⎟

⎟

⎟

⎠

, (20)

such that the two forms of the governing equations given in Eqs.
(9)–(10) are written respectively as

𝗊,𝑡 + 𝖿,𝑋1
= 𝟢, (21a)

𝗊,𝑡 + ∇𝗊𝖿 ⋅ 𝗊,𝑋1
= 𝟢, (21b)

where ∇𝗊𝖿 ≡ 𝖦. Eq. (21b) is in the form of a conservation law for 𝗊.
We consider a grid of uniform length 𝛥𝑋, and approximate the val-

ues of 𝗊 and 𝖿 as constants within each length element using the value
at the center of the element; the 𝑖th element is denoted using superscript
𝑖, see Fig. 2(a). Following LeVeque [29], we formulate a finite-volume
scheme based on an approximate solution to the Riemann problem
between two adjacent cells 𝑖 and 𝑖+1. We adopt the flux-decomposition
approach of LeVeque [33] and Bale et al. [34], i.e., we solve the system

𝖿 (𝑖+1) − 𝖿 (𝑖) =
2
∑

𝑘=1
J𝐴𝑘K

𝑖𝗋(𝑖)𝑘 +
4
∑

𝑘=3
J𝐴𝑘K

𝑖𝗋(𝑖+1)𝑘 ; (22)

here,
{

𝗋𝑘
}

are eigenvectors of 𝖦, namely,

𝗋1 =

⎛

⎜

⎜

⎜

⎜

⎝

1
𝜂

𝜌𝐿𝑐+
𝜂𝜌𝐿𝑐+

⎞

⎟

⎟

⎟

⎟

⎠

, 𝗋2 =

⎛

⎜

⎜

⎜

⎜

⎝

−𝜁
1

−𝜁𝜌𝐿𝑐−
𝜌𝐿𝑐−

⎞

⎟

⎟

⎟

⎟

⎠

, 𝗋3 =

⎛

⎜

⎜

⎜

⎜

⎝

−𝜁
1

𝜁𝜌𝐿𝑐−
−𝜌𝐿𝑐−

⎞

⎟

⎟

⎟

⎟

⎠

, 𝗋4 =

⎛

⎜

⎜

⎜

⎜

⎝

1
𝜂

−𝜌𝐿𝑐+
−𝜂𝜌𝐿𝑐+

⎞

⎟

⎟

⎟

⎟

⎠

,

(23)

where 𝜂 = −
(

𝛼 − 𝜌𝐿𝑐+
)

∕𝛽, 𝜁 = 𝛽∕
(

𝛼 − 𝜌𝐿𝑐−
)

, and J𝐴𝑘K𝑖 denotes the
jump in 𝖿 in the direction of its 𝑘th eigenvector between cells 𝑖 and
𝑖+1. Thus, Eq. (22) constitutes a linear algebraic system of equations for
J𝐴𝑘K𝑖. Physically, this solution corresponds to four waves propagating
with the velocities 𝑐𝑛 = −𝑐+, −𝑐−, 𝑐− and 𝑐+, which contains jumps in
𝖿 and 𝗊 that are proportional to the respective eigenvectors. Charac-
teristic curves as representative solutions to the Riemann problem of
two adjacent phases in cells 𝑖 and 𝑖+1 are shown in Fig. 2(b), as given
by Eq. (22). These solutions are composed of four linear waves with
a discontinuity in the state and flux fields, where the slopes of the
characteristic lines are their velocity. These waves are separated into
two rightward- and two leftward propagating waves.

As noted in the introduction, the common approach is to decompose
the difference 𝗊(𝑖+1) − 𝗊(𝑖) instead of 𝖿 (𝑖+1) − 𝖿 (𝑖). In our problem the
mismatch in the material parameters between the adjacent cells results
in 𝗊 containing an additional jump at the interface which is not in the
direction of any one of the eigenvectors. As advocated by LeVeque [33]
and Bale et al. [34] in the context of pressure (compression) waves in
nonlinear heterogeneous solids, the decomposition of the difference in
𝖿 delivers a simpler set of equations, since 𝖿 must be continuous across
the interface.

Next, we integrate the approximate solution in a finite-volume
scheme, as done by LeVeque [29]. We use a Godunov-type method with
a second order correction [58]

𝗊(𝑖) (𝑡 + 𝛥𝑡) = 𝗊(𝑖) (𝑡)− 𝛥𝑡
𝛥𝑋

(

𝖿 (𝑖,𝑖+1) − 𝖿 (𝑖−1,𝑖)
)

− 𝛥𝑡
2𝛥𝑋

(

𝖿 (𝑖,𝑖+1) − 𝖿 (𝑖−1,𝑖)
)

, (24)

where

𝖿 (𝑖,𝑖+1) ∶= 𝖿 (𝑖) + J𝐴1K
𝑖𝗋(𝑖)1 + J𝐴2K

𝑖𝗋(𝑖)2 ≡ 𝖿 (𝑖+1) − J𝐴4K
𝑖𝗋(𝑖+1)4 − J𝐴3K

𝑖𝗋(𝑖+1)3 (25)

is the value of 𝖿 at the interface (see Fig. 2(b)), and

𝖿 (𝑖,𝑖+1) =
4
∑

𝑘=1
sign 𝑐(𝑖+𝑗)𝑘

(

1 − 𝛥𝑡
𝛥𝑋

|

|

|

𝑐(𝑖+𝑗)𝑘
|

|

|

)

J𝐴𝑘K
𝑖𝗋(𝑖+𝑗)𝑘 (26)

is the second order correction, with 𝑗 equals 0 (resp. 1) for 𝑘 = 1, 2
(resp. 𝑘 = 3, 4).
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Fig. 2. (a) Illustration of the discretization of the material in the numerical scheme. (b) Representative characteristic curves associated with the solution to the Riemann problem
of two adjacent phases between cells 𝑖 and 𝑖 + 1.

Table 1
Sets of Gent moduli used in the numerical simulations, chosen from the
characteristic range of the values that fits elastomers.

Set 𝜌
[

kg∕m3] 𝜇 [kPa] 𝜅 [MPa] 𝐽𝑚
1 1000 100 0.5 10
2 1000 400 2 10
3 500 200 1 10
4 4000 200 1 10

While the second order correction improves the numerical solution
when the exact solution is smooth, in case of discontinuities it may lead
to unwanted numerical oscillations. To resolve this issue, we employ
the approach that was introduced by LeVeque [29] which uses a wave
limiter, namely, we replace J𝐴𝑘K𝑖 in Eq. (26) by 𝜙

(

𝜃(𝑖,𝑖+1)𝑘

)

J𝐴𝑘K𝑖, where
𝜙 is a function of

𝜃(𝑖,𝑖+1)𝑘 =
𝑐(𝑖+𝑗)𝑘 J𝐴𝑘K𝑖−2𝑗+1

𝑐(𝑖−𝑗+1)𝑘 J𝐴𝑘K𝑖

𝗋𝖳(𝑖+𝑗)𝑘 ⋅ 𝗋(𝑖−𝑗+1)𝑘

𝗋𝖳(𝑖+𝑗)𝑘 ⋅ 𝗋(𝑖+𝑗)𝑘

. (27)

(See a discussion on earlier versions of wave limiters by LeVeque [29],
and the references therein.) The monotonized centered function is a
simple example of 𝜙, defined by

𝜙
(

𝜃(𝑖,𝑖+1)𝑘

)

= max

{

0,min

(

1
2
+

𝜃(𝑖,𝑖+1)𝑘
2

, 2, 2𝜃(𝑖,𝑖+1)𝑘

)}

. (28)

Lastly, in order for the method to be numerically stable, it is nec-
essary for the Courant–Friedrichs–Lewy (CFL) condition to be satisfied,
that is
𝛥𝑡
𝛥𝑋

max
𝑖

𝑐(𝑖)+ < 1. (29)

The left-hand side in Eq. (29) is referred to as the Courant number [59].
The domain of dependence of a point

{

𝑥0, 𝑡0
}

is the set of points {𝑥, 𝑡}
upon which the solution 𝑢𝑖

(

𝑥0, 𝑡0
)

has a dependency. The CFL condition
ensures that the domain of dependence of the exact solution to the par-
tial differential equation is contained within the domain of dependence
of the numerical solution. If the CFL condition is not satisfied, then
the exact solution depends on a larger set of points than the numerical
solution. In such case, changing the state in certain points may change
the exact solution but not the numerical solution, and therefore the
numerical solution cannot converge to the exact one.

4. Validation of the method using benchmark problems

In the numerical simulations to follow, we use sets of values from
Table 1 as the moduli of the phases. These values were taken as
representative values within the characteristic range of the values that
fits elastomers, see, e.g.,Refs. [60–62], and the references therein. In
the numerical examples to follow, we set the Courant number to 0.9.

We first test our scheme in Section 4.1 against the analytical solu-
tion for the problem of a finite layer that is released from an initial
shear strain, while bounded between two semi-infinite layers with
different parameters. In Section 4.2 we test it in a nonlinear problem
of the scattering of an incident finite-amplitude shock wave from one
half-space, impinging on an interface with a second half-space made of
a different material.

4.1. Small-amplitude waves

Our first test case corresponds to a ‘‘fiber’’ of thickness 𝑙 = 0.1m with
the property set 2 in Tab. 1, bounded by two semi-infinite ‘‘matrix’’

5
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Fig. 3. (a) The distribution of 𝜖2 as function of 𝑋1 at 𝑡 = 0 (dash) and 𝑡 = 30 ms (solid). (b) The location of each strain local peak in the domain 𝑋1 > 0.05 as function of time.

Fig. 4. (a) The strains of 𝜖1 and 𝜖2 at 𝑡 = 10ms for the shock scattering problem. The dashed line is the initial strain. The black line is the solution using Newton’s method, and
markers correspond to our finite-volume solutions with different grids. (b) The 1-norm of the errors of 𝜖1 (circles) and 𝜖2 (diamonds) as function of the cell length 𝛥𝑋.

phases with the property set 1 in Tab. 1. The fiber is subjected to the
infinitesimal initial strain field

𝜖2
(

𝑋1, 𝑡 = 0
)

=

{

10−3 cos 𝜋
𝑙 𝑋1, − 𝑙

2 < 𝑋1 <
𝑙
2 ,

0, elsewhere.
(30)

This test case is similar to the test case by Bale et al. [34], with the
difference that we prescribe initial shear instead of compression, and
use nonlinear phases. The solution is obtained using our finite volume
method with a grid of 2000 cells per meter (𝛥𝑋 = 0.5 mm).

Fig. 3(a) shows the shear strain 𝜖2 as function of 𝑋1 at 𝑡 = 0 (dashed
line) and 𝑡 = 30 ms (solid line). As discussed by Bale et al. [34], the
initial strain is symmetrically separated into rightward and leftward
propagating waves that repeatedly reflect and refract at the interfaces,
thereby generating a train of (in this case shear) waves in the semi-
infinite media. Note that 𝜖1 remains zero everywhere as it should in
this uncoupled linear limit. The resultant waves are compared with the
analytical solution for their length and velocity, see, e.g., the derivation
by Shmuel and Moiseyev [44]. We first present in panel (b) the location
of each strain local peak in the domain 𝑋1 > 0.05 as function of time.
We observe that the curves are linear with the constant slope 9.98 ms−1,
which implies a 0.2% error with respect to the analytical value in the
limit of small strains, namely, 𝑐(𝑚) =

√

𝜇(𝑚)∕𝜌(𝑚)𝐿 = 10ms−1.

Next, we compare the wavelengths in the numerical simulation
to the analytical prediction. According to Eq. (46) of Shmuel and
Moiseyev [44], the allowed wavelength is 𝜆 = 2𝑙𝑐(𝑚)∕𝑐(𝑓 ), where 𝑐(𝑓 ) =

√

𝜇(𝑓 )∕𝜌(𝑓 )𝐿 , yielding 𝜆 = 0.1m for our parameters. The wavelength6 as
measured by the peak-to-peak distance in our numerical simulation is
exactly 0.1 m between every adjacent peaks. The distance between the
first and second peaks is illustrated for example in Fig. 3(a).

4.2. Finite shock scattering at the interface between two half-spaces

We consider the case of reflection and transmission of an incident
shock wave of finite amplitude at an interface between two elastic
half-spaces. This nonlinear benchmark problem is chosen since we are
able to obtain for it numerical solutions using standard root-finding
algorithms—and specifically Newton’s method – which will be com-
pared with our finite-volume method. We use sets 1 and 2 for the
moduli of phase 𝑚 (left half-space) and phase 𝑓 (right half-space),
respectively. The left half-space is subjected to a shock wave for which
the pre-shock state is unstrained and at rest, and its post-shock state
is

(

𝜖1, 𝜖2, 𝑣1, 𝑣2
)

≈ (−0.2, 2.3, 2.6, −32.4). These initial conditions were
chosen to generate four shock waves, for which we obtain numerical
solutions using Newton’s method, as described by Ziv and Shmuel [7]
and in the Appendix. Fig. 4(a) shows the distribution of 𝜖1 (upper panel)
and 𝜖2 (lower panel) across −0.4m < 𝑋1 < 0.6m at 𝑡 = 10 ms. The black
line corresponds to the numerical solution of the exact equations. To

6 Note that since the initial condition has a discontinuity in its derivative,
it breaks down to rightward and leftward waves that also have discontinuous
derivatives at their ends. The interference of their subsequent refractions and
refractions yields strain fields in the 𝑚 phases that also exhibit a discontinuous
derivative.
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Fig. 5. (a) The strain distribution in the studied Gent laminate when subjected to axial-transverse strain. (b) The vector solitary wave velocity versus the maximal value of 𝜖1 at
the middle of phase 𝑚 over the time that the wave traverses a unit cell. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

test the convergence of our scheme, we compare solutions using three
different grids, namely, 𝛥𝑋 = 20 (orange triangles), 5 (red diamonds)
and 2.5 mm (blue circles). It is clear that upon refining the grid, our
scheme converges to the ‘‘exact’’ solution, which is partially covered by
the marks in the figure. In order to quantify the rate of convergence, we
calculate the 1-norm of the error 𝐸 between the two solutions, defined
by

‖𝐸‖1 = 𝛥𝑋
∑

𝑖

|

|

|

𝗊(𝑖) − 𝗊
(

𝑋1 = 𝑖𝛥𝑋
)

|

|

|

, (31)

where 𝗊 is the ‘‘exact’’ solution. Fig. 4(b) shows the 1-norm of the
errors of 𝜖1 (circles) and 𝜖2 (diamonds) as function of the cell length
𝛥𝑋 for each one of the three grids depicted in Fig. 4(a). The slope of
the norms are around 1 in a logarithmic scale, indicating that the rate
of convergence of the numerical solution is approximately of first order.
This is expected since the second order correction of the method is
neglected in the vicinity of discontinuities, where this solution consists
of discontinuities only.

A feature worth noting is the propagation of 𝜖1 without 𝜖2, as shown
at 𝑋1 = 0.5. This propagation is associated with the quasi-pressure
wave, which does not exhibit axial-transverse strain coupling in the
absence of pre-shear. As detailed by Ziv and Shmuel [7] in Sec. 2.1
therein, this coupling is given by

𝜕𝜖2
𝜕𝜖1

=
𝑐2+ − 𝛼

𝛽
, (32)

together with the compatibility (initial) condition. In our case, phase 𝑓
is not pre-sheared and we have that

lim
𝜖2(𝑡=0)→0

𝜕𝜖2
𝜕𝜖1

= 0, (33)

i.e., the strains are not coupled. Phase 𝑚 is pre-sheared, so the disconti-
nuities in 𝜖1 and 𝜖2 occur simultaneously with respect to 𝑋1. Fig. 6b
of Ziv and Shmuel [7] exhibits the same feature, where shocks in
homogeneous soft media were studied. By contrast, a similar analysis
for the quasi-shear waves shows that the strain components are coupled
even in the absence of pre-shear. Hence, the two strains are coupled
during the propagation of the quasi-shear wave. Since this wave is
slower than the pressure waves, this simultaneous spatial discontinuity
in 𝜖1 and 𝜖2 occurs at 𝑋1 which is smaller than 𝑋1 = 0.5.

5. Numerical experiments of coupled waves in nonlinear lami-
nates

We consider an infinite laminate composed of two alternating 𝑚 and
𝑓 compressible Gent layers with an equal length of 𝐻 (𝑚) = 𝐻 (𝑓 ) = 1 cm.

We use sets 3 and 4 in Table 1 for the moduli of phases 𝑚 and 𝑓 ,
respectively. Note that these sets differ only in the mass density; as we
show in the sequel, the modulation of this single property is sufficient
for the medium to support vector solitary waves. The laminate is
subjected to the initial strain field

𝜖𝑖
(

𝑋1, 𝑡 = 0
)

=

{

𝜖(𝐼)𝑖 + 𝐴𝑖 cos
𝜋
𝑤𝑋1, −𝑤

2 < 𝑋1 <
𝑤
2 ,

𝜖(𝐼)𝑖 , elsewhere,
(34)

where 𝜖(𝐼)𝑖 , 𝐴𝑖 and 𝑤 are prescribed quantities, and the values of 𝑖
depend on the type of displacements considered, as described next.

Coupled axial and transverse displacements.—Here, 𝑖 takes the values
1 and 2, and we set

𝜖(𝐼)1 = 0, 𝜖(𝐼)2 = 2.4, 𝐴1 = 𝐴2 = 0.2, 𝑤 = 0.19m. (35)

Fig. 5 shows 𝜖1 and 𝜖2 as functions of 𝑋1, using a grid of 2000 cells
per meter (𝛥𝑋 = 0.5 mm), such that each layer is discretized to 20
cells. Cyan, red, green and blue lines correspond to 𝑡 = 5, 30, 55 and
80ms, respectively. Remarkably, the rightward propagating wave7 is
separated into a train of vector solitary waves, maintaining both their
profile of the axial and shear components at the different periodic cells.
This observation of vector solitary waves in Gent laminates follows the
observation of scalar pressure solitary waves in nonlinear laminates
by LeVeque [33] and LeVeque and Yong [38]. Interestingly, we observe
that the width of each vector solitary waves is approximately ten layers,
similarly to the width reported by LeVeque and Yong [38] in the scalar
case. While not shown here, we note that the number of generated
solitary waves increases for greater values of 𝑤, as is the case for the
KdV solitary waves.

The dependency of the vector solitary wave velocity on the strain
amplitude is studied in panel (b). Specifically, we show the velocity
against the maximal value of 𝜖1 in the middle of phase 𝑚 over the
time that the solitary wave traverses a unit cell. We observe that the
velocity is a monotonically increasing function of the strain amplitude.
This dependency is in opposite of the dependency of the vector solitary
waves discovered by Deng et al. [52] in the discrete mechanical system
they conceived, and similar to the dependency of the KdV solitons and
the dependency observed by LeVeque and Yong [38].

Coupled transverse displacements in two dimensions.—In this case 𝑖 = 2
and 3, and we set

𝜖(𝐼)2 = 1, 𝜖(𝐼)3 = 0, 𝐴2 = 0, 𝐴3 = 2, 𝑤 = 0.2m. (36)

7 Owing to the symmetry of the problem, a mirrored wave that is
propagating to the left is also generated.
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Fig. 6. (a) The distribution of 𝜖𝑇 and 𝜃 in the studied laminate when subjected to transverse–transverse strain. (b) The linearly polarized solitary wave velocity versus the maximal
value of 𝜖𝑇 at the middle of phase 𝑚 over the time that the wave traverses a unit cell. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 6 shows 𝜖𝑇 and 𝜃 as functions of 𝑋1, using a grid of 2000 cells
per meter. Cyan, red, green and blue lines correspond to 𝑡 = 20, 90,
160 and 230 ms, respectively. We observe that the transformation (18)
proves useful also here, as it exposes two uncoupled polarizations of
different nature. Specifically, its shows a linear polarization associated
with 𝜖𝑇 that breaks up into a train of three solitary waves with similar
shape and different magnitude and velocity. The distance between each
peak and its following peak is increasing in time, implying that the
velocity is higher at higher strains. This is quantified in panel (b), where
the velocity of the linearly polarized solitary waves is plotted against
the maximal value of 𝜖𝑇 at the middle of phase 𝑚 over the time that the
solitary wave traverses a unit cell. The second polarization associated
with 𝜃 which lags behind the solitary waves is circular, and propagates
effectively as a linear wave as it does not break up into 𝜃-dependent
waves; while not shown here for brevity, this occurs independently of
the width of the initial localized strain 𝑤. Since the circular polarization
is of linear waves, and it propagates independently of the linearly
polarized solitary waves, the latter are scalar solitary waves and not
vector solitary waves, even though they propagate through two coupled
components of the displacement vector field.

6. Summary

We have developed a designated scheme to numerically solve the
equations that govern elastic waves with two coupled components of
finite amplitude in laminates made of nonlinear layers. Our scheme is
based on two main elements. The first one is loaned from LeVeque [29],
whose finite-volume method utilizes the solution of a Riemann problem
at the interface between grid cells to solve nonlinear hyperbolic systems
that are not in conservation form. The second element is the flux-
based wave decomposition of LeVeque [33] and Bale et al. [34]. Our
extension required accounting for the generation of additional waves
with respect to the acoustic problems of single stress component that
were addressed by LeVeque [33] and Bale et al. [34]. This was carried
out using a suitable matrix formulation which captures the coupling
between the different components of the displacement and stress fields.
We have specifically addressed two cases, namely, a motion with
coupling between its axial and transverse components, and a motion
with two coupled transverse components.

We first tested our method using two benchmark problems. The
first problem is linear, as there the initial strain is infinitesimal, and
indeed our scheme recovered the analytical solution for the velocity
and length of the generated waves. The second test case is of nonlinear

waves and therefore more challenging. Specifically, we considered an
incident shock of finite amplitude that strikes an interface between two
half-spaces made of different nonlinear materials. The constitutive
response of the half-spaces is described by the compressible Gent
model [46,56]; in our previous work [7] we have demonstrated that
this model is capable of capturing shear shock waves and tensile-
induced shocks phenomena in soft materials, which were observed
experimentally by Catheline et al. [47], Espíndola et al. [48], and Niem-
czura and Ravi-Chandar [49], respectively. For this problem, numerical
solutions using standard root-finding algorithms are accessible, and
a comparison between such solutions using Newton’s method and
our method has shown an excellent agreement between the two so-
lutions. This was the first numerical experiment of shock scattering
between two half-spaces in finite elastodynamics with two coupled
components.

Subsequently, we have applied our scheme in a numerical ex-
periment of finite-amplitude waves with two coupled components in
an initially strained periodic laminate made of two alternating com-
pressible Gent layers. In the case of coupled axial and transverse
displacements, our experiment revealed the generation of vector soli-
tary waves. To the best of our knowledge, this is the first observation of
vector solitary waves within the framework of continuum solid mechan-
ics. Our observation was preceded by the first construction of vector
solitary waves in discrete mechanical systems by Deng et al. [13,52,53].
There, the model is a periodic repetition of rigid squares that are
interlinked by springs, thereby supporting transitional and rotational
waves. Interestingly, while these vectorial mechanical waves are slower
at higher amplitudes, the vector waves in our continuum laminated
model are faster at higher amplitudes. Therefore, the vector solitary
waves here are more similar to KdV solitons and the acoustic solitary
waves analyzed by LeVeque and Yong [38].

In the case of a coupling between two displacement components
in the plane of the layers, our numerical experiment revealed the
generation of a linearly degenerate wave of circular polarization that
lags behind a train of solitary waves with linear polarization. Here
again, the solitary waves are faster at higher amplitudes.

We believe that this paper establishes a starting point for several
future works, among which we list the development of related higher-
other methods such as the weighted essentially non-oscillatory (WENO)
finite difference, see the survey by Shu [63] and the references therein;
methods and studies concerning higher-dimensional problems [29,34,
43,64]; analytical investigations using homogenization approaches [38,
64,65]; and the introduction of a kinematic split between the isochoric
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and volumetric parts of the motion into the method, which is useful
when the volumetric stiffness is several orders of magnitude greater
than the shear stiffness [66,67].
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Appendix. Solution to a transmission problem between two half-
spaces

The general solution to the interface problem formulated in Sec-
tion 4.2 consists of four waves, namely, two leftward propagating
waves and two rightward propagating waves. For smooth waves to
propagate, the velocity at the tail of the wave should be smaller than
the velocity at the wavefront, and its change in-between should be
monotonic. As described by Ziv and Shmuel [7] and the references
therein, shock waves form when these conditions fail; see also the work
of Berjamin et al. [68] for the one-dimensional case. Specifically for
this problem which involves quasi-shear and pressure waves, in each
medium there are four different combinations of ways these waves
may evolve, namely, smooth–smooth, shock–smooth, smooth–shock,
and shock–shock. To determine which combination takes place, one
approach is to use a semi-inverse method, namely, assume a solution,
examine the compatibility of the relevant equations, and proceed to the
next possible combination if the equations are not compatible (see the
paper by Ziv and Shmuel [7], for more details). For the shock–shock
combination, the corresponding jump conditions across each shock
are [14]
𝜌𝐿J𝑣1K𝑉 + J𝑃11K = 0, J𝜖1K𝑉 + J𝑣1K = 0,

𝜌𝐿J𝑣2K𝑉 + J𝑃21K = 0, J𝜖2K𝑉 + J𝑣2K = 0,
(A.1)

where J◦K is the jump in (◦) ahead and behind the shock and 𝑉 is
the shock velocity. The continuity of the velocity and traction at the
interface is
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=
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11

𝑃 (𝑓 )
21
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⎟

⎟

⎟

⎟

⎠

. (A.2)

In order for this solution of the four shock waves to be stable, i.e.,
when the waves will remain to propagate as shocks, certain entropy
conditions must be satisfied. These conditions require that the wave
velocity is greater behind the shock than ahead of the shock, namely,

𝑐±
(

𝜖1 = 𝜖(ahead)1 , 𝜖2 = 𝜖(ahead)2

)

< 𝑉 < 𝑐±
(

𝜖1 = 𝜖(behind)1 , 𝜖2 = 𝜖(behind)2

)

,

(A.3)

Eqs. (A.1) and (A.2) yield 20 equations for determining 16 field vari-
ables and 4 shock velocities. The components 𝑣1, 𝑣2, 𝑃11, and 𝑃21 are
nonlinear functions of the deformation, hence closed-form solutions
are not accessible. The numerical solution to the interface problem
formulated in Section 4.2 is obtained with Newton’s method using the
commercial software Mathematica 11.3 [69].

References

[1] Amit Bandyopadhyay, Sahar Vahabzadeh, Anish Shivaram, Susmita Bose, Three-
dimensional printing of biomaterials and soft materials, MRS Bull. (ISSN:
0883-7694) 40 (12) (2015) 1162–1169, http://dx.doi.org/10.1557/mrs.2015.
274.

[2] R.L. Truby, J.A. Lewis, Printing soft matter in three dimensions, Nature 540
(2016) 371–378.

[3] Katia Bertoldi, Vincenzo Vitelli, Johan Christensen, Martin van Hecke, Flexible
mechanical metamaterials, Nat. Rev. Mater. 2 (11) (2017) 17066.

[4] N. Nadkarni, C. Daraio, D.M. Kochmann, Dynamics of periodic mechani-
cal structures containing bistable elastic elements: From elastic to solitary
wave propagation, Phys. Rev. E 90 (2) (2014) 23204, http://dx.doi.org/10.
1103/PhysRevE.90.023204, URL http://link.aps.org/doi/10.1103/PhysRevE.90.
023204.

[5] Neel Nadkarni, Andres F. Arrieta, Christopher Chong, Dennis M. Kochmann,
Chiara Daraio, Unidirectional transition waves in bistable lattices, Phys. Rev.
Lett. 116 (24) (2016) 244501.

[6] Alexander M. Samsonov, Irina V. Semenova, Fedor E. Garbuzov, Nonlinear
guided bulk waves in heterogeneous elastic structural elements, Int. J. Non-Linear
Mech. 94 (2017) 343–350.

[7] Ron Ziv, Gal Shmuel, Smooth waves and shocks of finite amplitude in soft
materials, Mech. Mater. (ISSN: 0167-6636) 135 (2019) 67–76, http://dx.doi.org/
10.1016/j.mechmat.2019.05.002, URL http://www.sciencedirect.com/science/
article/pii/S016766361930002X.

[8] Bolei Deng, Chengyang Mo, Vincent Tournat, Katia Bertoldi, Jordan R. Raney,
Focusing and mode separation of elastic vector solitons in a 2d soft mechanical
metamaterial, Phys. Rev. Lett. 123 (2) (2019) 024101a.

[9] Shmuel Katz, Sefi Givli, Solitary waves in a nonintegrable chain with
double-well potentials, Phys. Rev. E 100 (2019) 032209, http://dx.doi.org/10.
1103/PhysRevE.100.032209, URL https://link.aps.org/doi/10.1103/PhysRevE.
100.032209.

[10] J. Raney, N. Nadkarni, C. Daraio, D.M. Kochmann, J.A. Lewis, K. Bertoldi, Stable
propagation of mechanical signals in soft media using stored elastic energy, Proc.
Natl. Acad. Sci. USA. (2016).

[11] Hiromi Yasuda, Yasuhiro Miyazawa, Efstathios G. Charalampidis, Christopher
Chong, Panayotis G. Kevrekidis, Jinkyu Yang, Origami-based impact mitigation
via rarefaction solitary wave creation, Sci. Adv. 5 (5) (2019) eaau2835.

[12] Myungwon Hwang, Andres F. Arrieta, Input-independent energy harvesting in
bistable lattices from transition waves, Sci. Rep. 8 (1) (2018) 3630.

[13] Bolei Deng, Pai Wang, Qi He, Vincent Tournat, Katia Bertoldi, Metamaterials
with amplitude gaps for elastic solitons, Nat. Commun. 9 (1) (2018) 3410.

[14] L. Davison, Propagation of plane waves of finite amplitude in elastic solids, J.
Mech. Phys. Solids (ISSN: 0022-5096) 14 (5) (1966) 249–270, http://dx.doi.org/
10.1016/0022-5096(66)90022-6, URL http://www.sciencedirect.com/science/
article/pii/0022509666900226.

[15] Michael M. Carroll, Some results on finite amplitude elastic waves, Acta Mech.
3 (2) (1967) 167–181.

[16] Michel Destrade, Giuseppe Saccomandi, Finite amplitude elastic waves
propagating in compressible solids, Phys. Rev. E 72 (1) (2005) 16620.

[17] S. Chockalingam, T. Cohen, Shear shock evolution in incompressible soft
solids, J. Mech. Phys. Solids (ISSN: 0022-5096) 134 (2020) 103746, http:
//dx.doi.org/10.1016/j.jmps.2019.103746, URL http://www.sciencedirect.com/
science/article/pii/S0022509619306684.

[18] Douglas S. Drumheller, Introduction to Wave Propagation in Nonlinear
Fluids and Solids, Cambridge University Press, Cambridge, ISBN:
9780521587464, 1998, http://dx.doi.org/10.1017/CBO9781139174893, URL
https://www.cambridge.org/core/books/introduction-to-wave-propagation-in-
nonlinear-fluids-and-solids/4E630F47CFC8D05C86766C5E46C4410C.

[19] Gilles Kluth, Bruno Després, 2d finite volume lagrangian scheme in hyperelas-
ticity and finite plasticity, in: unilla Kreiss, Per Lötstedt, Axel Målqvist, Maya
Neytcheva (Eds.), Numerical Mathematics and Advanced Applications 2009,
Springer Berlin Heidelberg, Berlin, Heidelberg, ISBN: 978-3-642-11795-4, 2010,
pp. 489–496.

[20] Javier Bonet, Antonio J. Gil, Rogelio Ortigosa, A computational framework
for polyconvex large strain elasticity, Comput. Methods Appl. Mech. Engrg.
283 (2015) 1061–1094, http://dx.doi.org/10.1016/j.cma.2014.10.002, URL http:
//www.sciencedirect.com/science/article/pii/S0045782514003636.

[21] Jacob Aboudi, Yako Benveniste, One-dimensional finite amplitude wave propaga-
tion in a compressible elastic half-space, Int. J. Solids Struct. (ISSN: 0020-7683)
9 (3) (1973) 363–378, http://dx.doi.org/10.1016/0020-7683(73)90086-3, URL
http://www.sciencedirect.com/science/article/pii/0020768373900863.

[22] Olivier Bou Matar, Pierre-Yves Guerder, YiFeng Li, Bart Vandewoestyne, Koen
Van Den Abeele, A nodal discontinuous galerkin finite element method for non-
linear elastic wave propagation, J. Acoust. Soc. Am. 131 (5) (2012) 3650–3663,
http://dx.doi.org/10.1121/1.3693654.

[23] Harold Berjamin, Bruno Lombard, Guillaume Chiavassa, Nicolas Favrie, A finite-
volume approach to 1d nonlinear elastic waves: Application to slow dynamics,
Acta Acust. United Acust. 104 (4) (2018) 561–570.

9

http://dx.doi.org/10.1557/mrs.2015.274
http://dx.doi.org/10.1557/mrs.2015.274
http://dx.doi.org/10.1557/mrs.2015.274
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb2
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb2
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb2
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb3
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb3
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb3
http://dx.doi.org/10.1103/PhysRevE.90.023204
http://dx.doi.org/10.1103/PhysRevE.90.023204
http://dx.doi.org/10.1103/PhysRevE.90.023204
http://link.aps.org/doi/10.1103/PhysRevE.90.023204
http://link.aps.org/doi/10.1103/PhysRevE.90.023204
http://link.aps.org/doi/10.1103/PhysRevE.90.023204
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb5
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb5
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb5
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb5
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb5
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb6
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb6
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb6
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb6
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb6
http://dx.doi.org/10.1016/j.mechmat.2019.05.002
http://dx.doi.org/10.1016/j.mechmat.2019.05.002
http://dx.doi.org/10.1016/j.mechmat.2019.05.002
http://www.sciencedirect.com/science/article/pii/S016766361930002X
http://www.sciencedirect.com/science/article/pii/S016766361930002X
http://www.sciencedirect.com/science/article/pii/S016766361930002X
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb8
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb8
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb8
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb8
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb8
http://dx.doi.org/10.1103/PhysRevE.100.032209
http://dx.doi.org/10.1103/PhysRevE.100.032209
http://dx.doi.org/10.1103/PhysRevE.100.032209
https://link.aps.org/doi/10.1103/PhysRevE.100.032209
https://link.aps.org/doi/10.1103/PhysRevE.100.032209
https://link.aps.org/doi/10.1103/PhysRevE.100.032209
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb10
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb10
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb10
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb10
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb10
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb11
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb11
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb11
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb11
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb11
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb12
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb12
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb12
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb13
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb13
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb13
http://dx.doi.org/10.1016/0022-5096(66)90022-6
http://dx.doi.org/10.1016/0022-5096(66)90022-6
http://dx.doi.org/10.1016/0022-5096(66)90022-6
http://www.sciencedirect.com/science/article/pii/0022509666900226
http://www.sciencedirect.com/science/article/pii/0022509666900226
http://www.sciencedirect.com/science/article/pii/0022509666900226
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb15
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb15
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb15
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb16
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb16
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb16
http://dx.doi.org/10.1016/j.jmps.2019.103746
http://dx.doi.org/10.1016/j.jmps.2019.103746
http://dx.doi.org/10.1016/j.jmps.2019.103746
http://www.sciencedirect.com/science/article/pii/S0022509619306684
http://www.sciencedirect.com/science/article/pii/S0022509619306684
http://www.sciencedirect.com/science/article/pii/S0022509619306684
http://dx.doi.org/10.1017/CBO9781139174893
https://www.cambridge.org/core/books/introduction-to-wave-propagation-in-nonlinear-fluids-and-solids/4E630F47CFC8D05C86766C5E46C4410C
https://www.cambridge.org/core/books/introduction-to-wave-propagation-in-nonlinear-fluids-and-solids/4E630F47CFC8D05C86766C5E46C4410C
https://www.cambridge.org/core/books/introduction-to-wave-propagation-in-nonlinear-fluids-and-solids/4E630F47CFC8D05C86766C5E46C4410C
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb19
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb19
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb19
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb19
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb19
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb19
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb19
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb19
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb19
http://dx.doi.org/10.1016/j.cma.2014.10.002
http://www.sciencedirect.com/science/article/pii/S0045782514003636
http://www.sciencedirect.com/science/article/pii/S0045782514003636
http://www.sciencedirect.com/science/article/pii/S0045782514003636
http://dx.doi.org/10.1016/0020-7683(73)90086-3
http://www.sciencedirect.com/science/article/pii/0020768373900863
http://dx.doi.org/10.1121/1.3693654
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb23
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb23
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb23
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb23
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb23


R. Ziv and G. Shmuel International Journal of Non-Linear Mechanics 124 (2020) 103502

[24] E. Godlewski, P.A. Raviart, Numerical Approximation of Hyperbolic Systems
of Conservation Laws, in: Number 118 in Applied Mathematical Sciences,
Springer, ISBN: 9780387945293, 1996, URL https://books.google.co.il/books?
id=9BwMIDMmTmcC.

[25] Eleuterio F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics,
1997.

[26] J.A. Trangenstein, Numerical Solution of Hyperbolic Partial Differential
Equations, Cambridge University Press, ISBN: 9780521877275, 2009.

[27] Randall J. LeVeque, Finite Volume Methods for Hyperbolic Problems,
Cambridge University Press, Cambridge, ISBN: 9780521009249, 2002,
http://dx.doi.org/10.1017/CBO9780511791253, URL https://www.
cambridge.org/core/books/finite-volume-methods-for-hyperbolic-problems/
97D5D1ACB1926DA1D4D52EAD6909E2B9.

[28] Peter Lax, Burton Wendroff, Systems of conservation laws, Commun. Pure Appl.
Math. 13 (2) (1960) 217–237.

[29] Randall J. LeVeque, Wave propagation algorithms for multidimensional hyper-
bolic systems, J. Comput. Phys. (ISSN: 0021-9991) 131 (2) (1997) 327–353,
http://dx.doi.org/10.1006/jcph.1996.5603.

[30] Arkadi Berezovski, GA Maugin, Simulation of thermoelastic wave propagation
by means of a composite wave-propagation algorithm, J. Comput. Phys. 168 (1)
(2001) 249–264.

[31] Philip Trevor Barton, Dimitris Drikakis, E.I. Romenski, An Eulerian finite-volume
scheme for large elastoplastic deformations in solids, Internat. J. Numer. Methods
Engrg. 81 (4) (2010) 453–484.

[32] Tiernan R. Fogarty, Randall J. LeVeque, High-resolution finite-volume methods
for acoustic waves in periodic and random media, J. Acoust. Soc. Am. 106 (1)
(1999) 17–28.

[33] Randall J. LeVeque, Finite-volume methods for non-linear elasticity in
heterogeneous media, Int. J. Numer. Methods Fluids 40 (1–2) (2002) 93–104.

[34] D.S. Bale, R.J. Leveque, S. Mitran, J.A. Rossmanith, A wave propagation method
for conservation laws and balance laws with spatially varying flux functions,
SIAM J. Sci. Comput. (ISSN: 1064-8275) 24 (3) (2002) 955–978, http://dx.doi.
org/10.1137/S106482750139738X.

[35] Thierry Dauxois, Michel Peyrard, Physics of Solitons, Cambridge University Press,
2006.

[36] M.I. Hussein, R. Khajehtourian, Nonlinear bloch waves and balance between
hardening and softening dispersion, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng.
Sci. 474 (2217) (2018) 20180173.

[37] Randall J. LeVeque, Darryl H. Yong, Phase plane behavior of solitary waves
in nonlinear layered media, in: Hyperbolic Problems: Theory, Numerics,
Applications, Springer, 2003, pp. 43–51.

[38] Randall J. LeVeque, Darryl H. Yong, Solitary waves in layered nonlinear media,
SIAM J. Appl. Math. 63 (5) (2003) 1539–1560.

[39] J. Engelbrecht, A. Berezovski, A. Salupere, Nonlinear deformation waves in solids
and dispersion, Wave Motion (ISSN: 0165-2125) 44 (6) (2007) 493–500, http:
//dx.doi.org/10.1016/j.wavemoti.2007.02.006, Special Issue of Selected Papers
Presented at the International Symposium on Mechanical Waves in Solids, URL
http://www.sciencedirect.com/science/article/pii/S0165212507000224.

[40] Zhenli Xu, Peng Zhang, Ruxun Liu, 𝛿-Mapping algorithm coupled with weno
reconstruction for nonlinear elasticity in heterogeneous media, Appl. Nu-
mer. Math. (ISSN: 0168-9274) 57 (1) (2007) 103–116, http://dx.doi.org/10.
1016/j.apnum.2006.01.003, URL http://www.sciencedirect.com/science/article/
pii/S0168927406000055.

[41] Ben Lustig, Guy Elbaz, Alan Muhafra, Gal Shmuel, Anomalous energy transport
in laminates with exceptional points, J. Mech. Phys. Solids (ISSN: 0022-
5096) (2019) 103719, http://dx.doi.org/10.1016/j.jmps.2019.103719, URL http:
//www.sciencedirect.com/science/article/pii/S0022509619306921.

[42] W.D. Collins, One-dimensional non-linear wave propagation in incompressible
elastic materials, Quart. J. Mech. Appl. Math. 19 (3) (1966) 259–328.

[43] Harold Berjamin, Bruno Lombard, Guillaume Chiavassa, Nicolas Favrie, Plane-
strain waves in nonlinear elastic solids with softening, Wave Motion 89 (2019)
65–78.

[44] Gal Shmuel, Nimrod Moiseyev, Linking scalar elastodynamics and non-hermitian
quantum mechanics, Phys. Rev. Appl. 13 (2020) 024074, http://dx.doi.
org/10.1103/PhysRevApplied.13.024074, URL https://link.aps.org/doi/10.1103/
PhysRevApplied.13.024074.

[45] Lee Davison, Fundamentals of Shock Wave Propagation in Solids, Springer-Verlag
Berlin Heidelberg, 2008.

[46] A.N. Gent, A new constitutive relation for rubber, Rubber Chem. Technol. 69
(1996) 59–61.

[47] S. Catheline, J.-L. Gennisson, M. Tanter, M. Fink, Observation of shock transverse
waves in elastic media, Phys. Rev. Lett. 91 (2003) 164301, http://dx.doi.org/
10.1103/PhysRevLett.91.164301, https://link.aps.org/doi/10.1103/PhysRevLett.
91.164301.

[48] David Espíndola, Stephen Lee, Gianmarco Pinton, Shear shock waves observed
in the brain, Phys. Rev. A 8 (4) (2017) 044024.

[49] J. Niemczura, K. Ravi-Chandar, On the response of rubbers at high strain
rates—II. Shock waves, J. Mech. Phys. Solids (ISSN: 0022-5096) 59 (2)
(2011) 442–456, http://dx.doi.org/10.1016/j.jmps.2010.09.007, URL http://
www.sciencedirect.com/science/article/pii/S0022509610001833.

[50] Yijiang Chen, Stability of vector solitary waves, Phys. Rev. A 50 (1994) 5205–
5208, http://dx.doi.org/10.1103/PhysRevA.50.5205, URL https://link.aps.org/
doi/10.1103/PhysRevA.50.5205.

[51] Zhigang Chen, Mordechai Segev, Demetrios N. Christodoulides, Optical spatial
solitons: historical overview and recent advances, 75 (8), 2012, p. 086401,
http://dx.doi.org/10.1088/0034-4885/75/8/086401.

[52] B. Deng, J.R. Raney, V. Tournat, K. Bertoldi, Elastic vector solitons in soft
architected materials, Phys. Rev. Lett. 118 (2017) 204102.

[53] Bolei Deng, Vincent Tournat, Pai Wang, Katia Bertoldi, Anomalous collisions of
elastic vector solitons in mechanical metamaterials, Phys. Rev. Lett. 122 (2019)
044101b.

[54] R.W. Ogden, Non-Linear Elastic Deformations, Dover Publications, New York,
1997.

[55] J. Bonet, R.D. Wood, Nonlinear Continuum Mechanics for Finite Elements
Analysis, Cambridge University Press, 1997.

[56] O. Lopez-Pamies, P. Ponte Castañeda, Homogenization-based constitutive models
for porous elastomers and implications for macroscopic instabilities: Ii—results,
J. Mech. Phys. Solids (ISSN: 0022-5096) 55 (8) (2007) 1702–1728, http:
//dx.doi.org/10.1016/j.jmps.2007.01.008, URL http://www.sciencedirect.com/
science/article/pii/S0022509607000269.

[57] Cornelius O. Horgan, The remarkable Gent constitutive model for hyperelastic
materials, Int. J. Non-Linear Mech. (ISSN: 0020-7462) 68 (2015) 9–16, http:
//dx.doi.org/10.1016/j.ijnonlinmec.2014.05.010, URL http://www.sciencedirect.
com/science/article/pii/S0020746214001127.

[58] Sergei Konstantinovich Godunov, A difference method for numerical calculation
of discontinuous solutions of the equations of hydrodynamics, Mat. Sb. 89 (3)
(1959) 271–306.

[59] Richard Courant, Kurt Friedrichs, Hans Lewy, On the partial difference equations
of mathematical physics, IBM J. Res. Dev. 11 (2) (1967) 215–234.

[60] G. Marckmann, E. Verron, Comparison of hyperelastic models for rubber-like
materials, Rubber Chem. Technol. 79 (5) (2006) 835–858, http://dx.doi.org/10.
5254/1.3547969, 2020/02/16.

[61] F. Carpi, D. De Rossi, R. Kornbluh, R. Pelrine, P. Sommer-Larsen, Dielectric
Elastomers As Electromechanical Transducers: Fundamentals, Materials, Devices,
Models and Applications of an Emerging Electroactive Polymer Technology,
Elsevier Science, ISBN: 978-0-08-047488-5, 2008.

[62] R. Getz, D.M. Kochmann, G. Shmuel, Voltage-controlled complete stopbands in
two-dimensional soft dielectrics, Int. J. Solids Struct. (ISSN: 0020-7683) 113–
114 (2017) 24–36, http://dx.doi.org/10.1016/j.ijsolstr.2016.10.002, URL http:
//www.sciencedirect.com/science/article/pii/S0020768316302931.

[63] Chi-Wang Shu, High order weno and dg methods for time-dependent convection-
dominated pdes: A brief survey of several recent developments, J. Comput.
Phys. 316 (2016) 598–613, http://dx.doi.org/10.1016/j.jcp.2016.04.030, URL
http://www.sciencedirect.com/science/article/pii/S0021999116300766.

[64] Manuel Quezada de Luna, David I. DavKetcheson, Two-dimensional wave propa-
gation in layered periodic media, SIAM J. Appl. Math. 74 (6) (2014) 1852–1869,
http://dx.doi.org/10.1137/130937962, 2020/02/17.

[65] Igor V. Andrianov, Vladyslav V. Danishevs’ kyy, Heiko Topol, Dieter Weichert,
Homogenization of a 1d nonlinear dynamical problem for periodic composites,
ZAMM-J. Appl. Math. Mech. 91 (6) (2011) 523–534.

[66] G.A. Holzapfel, Nonlinear Solid Mechanics: A Continuum Approach for Engineer-
ing, Wiley, ISBN: 9780471823193, 2000, URL https://books.google.co.il/books?
id=_ZkeAQAAIAAJ.

[67] Fran.̧cois Peyraut, Zhi-Qiang Feng, Nadia Labed, A material-independent algo-
rithm for preserving of the orientation of the spatial basis attached to deforming
medium, Comput. Mech. 40 (6) (2007) 1053–1060, http://dx.doi.org/10.1007/
s00466-007-0163-0.

[68] Harold Berjamin, Bruno Lombard, Guillaume Chiavassa, Nicolas Favrie, Analyti-
cal solution to 1d nonlinear elastodynamics with general constitutive laws, Wave
Motion 74 (2017) 35–55, http://dx.doi.org/10.1016/j.wavemoti.2017.06.006,
URL http://www.sciencedirect.com/science/article/pii/S016521251730077X.

[69] Wolfram Research, Inc., Mathematica 11.3, URL https://www.wolfram.com.

10

https://books.google.co.il/books?id=9BwMIDMmTmcC
https://books.google.co.il/books?id=9BwMIDMmTmcC
https://books.google.co.il/books?id=9BwMIDMmTmcC
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb25
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb25
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb25
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb26
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb26
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb26
http://dx.doi.org/10.1017/CBO9780511791253
https://www.cambridge.org/core/books/finite-volume-methods-for-hyperbolic-problems/97D5D1ACB1926DA1D4D52EAD6909E2B9
https://www.cambridge.org/core/books/finite-volume-methods-for-hyperbolic-problems/97D5D1ACB1926DA1D4D52EAD6909E2B9
https://www.cambridge.org/core/books/finite-volume-methods-for-hyperbolic-problems/97D5D1ACB1926DA1D4D52EAD6909E2B9
https://www.cambridge.org/core/books/finite-volume-methods-for-hyperbolic-problems/97D5D1ACB1926DA1D4D52EAD6909E2B9
https://www.cambridge.org/core/books/finite-volume-methods-for-hyperbolic-problems/97D5D1ACB1926DA1D4D52EAD6909E2B9
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb28
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb28
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb28
http://dx.doi.org/10.1006/jcph.1996.5603
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb30
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb30
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb30
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb30
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb30
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb31
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb31
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb31
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb31
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb31
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb32
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb32
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb32
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb32
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb32
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb33
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb33
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb33
http://dx.doi.org/10.1137/S106482750139738X
http://dx.doi.org/10.1137/S106482750139738X
http://dx.doi.org/10.1137/S106482750139738X
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb35
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb35
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb35
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb36
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb36
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb36
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb36
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb36
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb37
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb37
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb37
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb37
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb37
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb38
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb38
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb38
http://dx.doi.org/10.1016/j.wavemoti.2007.02.006
http://dx.doi.org/10.1016/j.wavemoti.2007.02.006
http://dx.doi.org/10.1016/j.wavemoti.2007.02.006
http://www.sciencedirect.com/science/article/pii/S0165212507000224
http://dx.doi.org/10.1016/j.apnum.2006.01.003
http://dx.doi.org/10.1016/j.apnum.2006.01.003
http://dx.doi.org/10.1016/j.apnum.2006.01.003
http://www.sciencedirect.com/science/article/pii/S0168927406000055
http://www.sciencedirect.com/science/article/pii/S0168927406000055
http://www.sciencedirect.com/science/article/pii/S0168927406000055
http://dx.doi.org/10.1016/j.jmps.2019.103719
http://www.sciencedirect.com/science/article/pii/S0022509619306921
http://www.sciencedirect.com/science/article/pii/S0022509619306921
http://www.sciencedirect.com/science/article/pii/S0022509619306921
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb42
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb42
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb42
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb43
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb43
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb43
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb43
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb43
http://dx.doi.org/10.1103/PhysRevApplied.13.024074
http://dx.doi.org/10.1103/PhysRevApplied.13.024074
http://dx.doi.org/10.1103/PhysRevApplied.13.024074
https://link.aps.org/doi/10.1103/PhysRevApplied.13.024074
https://link.aps.org/doi/10.1103/PhysRevApplied.13.024074
https://link.aps.org/doi/10.1103/PhysRevApplied.13.024074
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb45
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb45
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb45
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb46
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb46
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb46
http://dx.doi.org/10.1103/PhysRevLett.91.164301
http://dx.doi.org/10.1103/PhysRevLett.91.164301
http://dx.doi.org/10.1103/PhysRevLett.91.164301
https://link.aps.org/doi/10.1103/PhysRevLett.91.164301
https://link.aps.org/doi/10.1103/PhysRevLett.91.164301
https://link.aps.org/doi/10.1103/PhysRevLett.91.164301
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb48
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb48
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb48
http://dx.doi.org/10.1016/j.jmps.2010.09.007
http://www.sciencedirect.com/science/article/pii/S0022509610001833
http://www.sciencedirect.com/science/article/pii/S0022509610001833
http://www.sciencedirect.com/science/article/pii/S0022509610001833
http://dx.doi.org/10.1103/PhysRevA.50.5205
https://link.aps.org/doi/10.1103/PhysRevA.50.5205
https://link.aps.org/doi/10.1103/PhysRevA.50.5205
https://link.aps.org/doi/10.1103/PhysRevA.50.5205
http://dx.doi.org/10.1088/0034-4885/75/8/086401
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb52
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb52
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb52
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb53
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb53
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb53
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb53
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb53
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb54
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb54
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb54
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb55
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb55
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb55
http://dx.doi.org/10.1016/j.jmps.2007.01.008
http://dx.doi.org/10.1016/j.jmps.2007.01.008
http://dx.doi.org/10.1016/j.jmps.2007.01.008
http://www.sciencedirect.com/science/article/pii/S0022509607000269
http://www.sciencedirect.com/science/article/pii/S0022509607000269
http://www.sciencedirect.com/science/article/pii/S0022509607000269
http://dx.doi.org/10.1016/j.ijnonlinmec.2014.05.010
http://dx.doi.org/10.1016/j.ijnonlinmec.2014.05.010
http://dx.doi.org/10.1016/j.ijnonlinmec.2014.05.010
http://www.sciencedirect.com/science/article/pii/S0020746214001127
http://www.sciencedirect.com/science/article/pii/S0020746214001127
http://www.sciencedirect.com/science/article/pii/S0020746214001127
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb58
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb58
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb58
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb58
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb58
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb59
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb59
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb59
http://dx.doi.org/10.5254/1.3547969
http://dx.doi.org/10.5254/1.3547969
http://dx.doi.org/10.5254/1.3547969
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb61
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb61
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb61
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb61
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb61
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb61
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb61
http://dx.doi.org/10.1016/j.ijsolstr.2016.10.002
http://www.sciencedirect.com/science/article/pii/S0020768316302931
http://www.sciencedirect.com/science/article/pii/S0020768316302931
http://www.sciencedirect.com/science/article/pii/S0020768316302931
http://dx.doi.org/10.1016/j.jcp.2016.04.030
http://www.sciencedirect.com/science/article/pii/S0021999116300766
http://dx.doi.org/10.1137/130937962
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb65
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb65
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb65
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb65
http://refhub.elsevier.com/S0020-7462(20)30164-5/sb65
https://books.google.co.il/books?id=_ZkeAQAAIAAJ
https://books.google.co.il/books?id=_ZkeAQAAIAAJ
https://books.google.co.il/books?id=_ZkeAQAAIAAJ
http://dx.doi.org/10.1007/s00466-007-0163-0
http://dx.doi.org/10.1007/s00466-007-0163-0
http://dx.doi.org/10.1007/s00466-007-0163-0
http://dx.doi.org/10.1016/j.wavemoti.2017.06.006
http://www.sciencedirect.com/science/article/pii/S016521251730077X
https://www.wolfram.com

	Observation of vector solitary waves in soft laminates using a finite-volume method
	Introduction
	Governing equations
	The finite-volume method 
	Validation of the method using benchmark problems 
	Small-amplitude waves
	Finite shock scattering at the interface between two half-spaces

	Numerical experiments of coupled waves in nonlinear laminates 
	Summary
	Declaration of competing interest
	Acknowledgments
	Appendix. Solution to a transmission problem between two half-spaces
	References


