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A B S T R A C T

Asymmetric piezoelectric composites exhibit coupling between their macroscopic linear momentum and electric
field, a coupling that does not appear at the microscopic scale. This electromomentum coupling constitutes
an additional knob to tailor the dynamic response of the medium, analogously to the Willis coupling in
elastic composites. Here, we employ topology- and free material optimization approaches to maximize the
electromomentum coupling of periodic piezoelectric laminates in the low frequency, long-wavelength limit. We
find that the coupling can be enhanced by orders of magnitude, depending on the degrees of freedom in the
optimization process. The optimal compositions that we find provide guidelines for the design of metamaterials
with maximum electromomentum coupling, paving the way for their integration in wave control applications.
1. Introduction

Metamaterials are artificial composites whose effective behavior is
fundamentally different from the behavior of their constituents (Kadic
et al., 2019; Christensen et al., 2015; Craster and Guenneau, 2012;
Deymier, 2013; Ma and Sheng, 2016; Simovski, 2009; Smith and
Pendry, 2006; Lustig et al., 2019; Sridhar et al., 2018; Wegener, 2013).
Of particular relevance to this work are Willis metamaterials (Willis,
1985, 1981b,a; Meng and Guzina, 2018; Milton and Willis, 2007;
Muhlestein et al., 2016; Nassar et al., 2015; Norris et al., 2012; Quan
et al., 2018; Shuvalov et al., 2011; Sieck et al., 2017; Srivastava, 2015;
Ponge et al., 2017; Torrent et al., 2015; Chen et al., 2020; Lau et al.,
2019; Melnikov et al., 2019; Popa et al., 2018; Muhlestein et al., 2017;
Liu et al., 2019; Merkel et al., 2018), whose linear momentum and
strain is coupled, and so are their stress and velocity: these couplings
do not appear in homogeneous media. They are captured by the so-
called Willis tensor that enters the effective constitutive relations of
the composite, reflecting a designable degree of freedom to tailor its
dynamic response. The Willis tensor is nonlocal in space and time; its
(spatially) local version was introduced by Milton et al. (2006), and a
model that demonstrates such behavior was developed later by Milton
(2007).

Recently, Pernas-Salomón and Shmuel (2020b) have generalized
the Willis couplings to piezoelectric composites, discovering that their
linear momentum and electric displacement field can be macroscop-
ically coupled with the electric field and velocity, respectively. This
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effect is captured by a second-order tensor – electromomentum tensor
– that enters the effective constitutive relations of the piezoelectric
composites. Analogously to the Willis tensor, the electromomentum
tensor not only constitutes an additional knob to tailor the dynamic
response, but is also necessary for obtaining a physical constitutive de-
scription (Pernas-Salomón and Shmuel, 2020a; Pernas-Salomón et al.,
2021; Muhafra et al., 2022). The electromomentum coupling captures
two changes in the propagation of elastic waves. (i) Similarly to the
Willis coupling (Muhlestein et al., 2017; Liu et al., 2019), it captures a
modification in the phase angle of propagating waves in an asymmetric
manner (Pernas-Salomón et al., 2021); a feature that allows for shaping
wavefronts, and in turn steering waves for different applications, such
as energy harvesting, wave focusing etc. (Quan et al., 2018; Chiang
et al., 2020; Park et al., 2020). In contrast with passive Willis materials,
the phase angle that is induced by the electromomentum coupling is
tunable, in the sense that by changing the electric circuit conditions, the
directional phase angle can be switched on and off. (ii) The electromo-
mentum couplings also reflect a change in the phase velocity, a change
that Willis materials do not exhibit (Pernas-Salomón et al., 2021); this
feature too can be switched on and off, by changing the electric circuit
conditions.

The objective of this work is to maximize the electromomentum
effect in periodic piezoelectric laminates driven by axial load sources.
The poling direction of the piezoelectric constituents is also in the
lamination direction, such that the problem is one-dimensional, and
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the electromomentum tensor becomes a scalar material property. We
further restrict attention to the low frequency, long-wavelength limit,
where the electromomentum coefficient depends linearly on the fre-
quency, and is local in space. The motivation for identifying laminates
with large electromomentum coefficient is twofold. First, it makes
more pronounced the phenomena that the electromomentum effect
generates, such as the change in the phase velocity and directional
phase angle of elastic waves (Pernas-Salomón et al., 2021). Second,
the optimal compositions are expected to elucidate the dependency
of the electromomentum coupling on the mechanical and geometrical
properties of the constituents. Very recently, a preliminary work to-
wards this end was done by Zhang et al. (2022). There, the authors
studied 8-layer unit cells made of five real materials, and examined how
the electromomentum coefficient changes as function of the different
material combinations and layer thickness. Here, we take a different
route, using optimization methods. Specifically, our approach is based
on topology- and free material optimization (FMO) methods: topology
optimization aims to determine the optimal material distribution for
a designated objective function in a given design space (Bendsøe and
Sigmund, 2004); FMO (Bendsøe et al., 1994; Zowe et al., 1997; Kočvara
et al., 2008) is an extension of topology optimization, in which each
material property can vary independently of the other properties. Since
the design space for FMO is free from the constraint of real materials, it
provides a kind of a theoretical upper bound for the objective function.

The objective function, i.e., the electromomentum coefficient, is
formulated as the end result of a homogenization process. In this
process, the heterogeneous constitutive properties of the composite are
replaced by fictitious homogeneous constitutive properties, relating the
macroscopic kinematic variables to the macroscopic kinetic variables.
Further details regarding the homogenization scheme are given in Sec-
tion 2. Accordingly, the optimization methods that we apply are in fact
inverse homogenization methods (Sigmund, 1994) for the constitutive
property.

Our analysis begins in Section 3 with discrete material optimization,
or DMO (Stegmann and Lund, 2005; Niu et al., 2010), where the design
space is a predefined set of real materials. For simplicity, here and in
the subsequent optimization problems, we restrict attention to periodic
cells that are made of three layers. Since this optimization is based
on a small number of discrete variables, we use a genetic algorithm
to solve the optimization problem. We find that the electromomentum
coefficient of the optimal laminate is two orders of magnitude larger
than the laminate that was first considered by Pernas-Salomón and
Shmuel (2020b), which was chosen arbitrarily. Henceforth, we refer
to the latter laminate as the reference laminate. We observe that the
optimization yields a choice of materials that tends to maximize the
contrast between their electromechanical properties, in a unit cell that
comprises one thin layer in-between two thick layers.

In Section 4 we consider a design space with continuous variables,
whose values are bounded in-between the extreme values of the ma-
terials considered earlier. We solve different optimization problems
using gradient-based algorithms that are implemented together with
a sensitivity analysis of the objective function. We first consider op-
timization problems whose design variables are pairs that consist the
mass density and one of the electromechanical properties, i.e., the
dielectric-, piezoelectric- and stiffness coefficients, while all the rest of
the properties are set to the properties of the reference laminate. We
find that each one of the optimal pairs enlarges the electromomentum
coefficient by another order of magnitude, in comparison with the
optimal laminate that is obtained from the DMO. We then proceed and
increase the number of design variables, and find that when all material
properties are designable, the electromomentum coefficient is enlarged
by another order of magnitude. We conclude this paper in Section 5,
2

with a summary of our main results.
Fig. 1. Part of an infinite medium made of a periodic cell with three layers. The
length of the first, second and third layer is denoted by 𝑙1, 𝑙2 and 𝑙3, respectively. The
elementary unit cell is boxed in dashed lines, where 𝑙𝑇 =

∑3
𝑚=1 𝑙𝑚.

2. The homogenization process

The homogenization process that we use to extract the electromo-
mentum coefficient is founded on two principles. (i) The macroscopic
fields are defined by the product of the Bloch envelope of the micro-
scopic fields and the volume average of their periodic part. Defined in
this way, the effective fields satisfy identically macroscopic governing
equations that are of the same form as the microscopic equations,
see the works of Willis (2011), Pernas-Salomón and Shmuel (2020b)
and Alù (2011b). (ii) We account for several driving sources in the
formulation (Fietz and Shvets, 2009, 2010; Alù, 2011b; Willis, 2011;
Pernas-Salomón and Shmuel, 2020b); collectively, these sources allow
us to obtain a unique set of effective properties (Willis, 2012; Nassar
et al., 2015; Pernas-Salomón and Shmuel, 2020a; Milton, 2020), which
satisfies necessary physical laws (Alù, 2011c; Muhlestein et al., 2016;
Pernas-Salomón and Shmuel, 2020a; Muhafra et al., 2022; Pernas-
Salomón et al., 2021).

Our averaging process uses the plane wave expansion method (Kush-
waha et al., 1993; Sigalas and Economou, 1996; Norris et al., 2012;
Ponge et al., 2017; Pernas-Salomón and Shmuel, 2018), and the resul-
tant scheme is essentially a one-dimensional reduction of the scheme
that was developed by Muhafra et al. (2022). In order to make this
manuscript self-contained and introduce the quantities that are used
in the optimization process, the complete one-dimensional scheme is
provided next.

Consider a periodic repetition of three piezoelectric layers, the
poling direction of which is in the lamination direction, say 𝑥. The
laminate is driven by a body force density 𝑓 , axial inelastic strain 𝜂,
and free charge density 𝑞, of the form

𝑠 (𝑥, 𝑡) = 𝑠0e𝑖(𝜅𝑥−𝜔𝑡), 𝑠 = 𝜂, 𝑓 , 𝑞, (1)

where {𝑠0} are constants. These sources generate a longitudinal motion,
𝑢 (𝑥, 𝑡), governed by the equations

𝜎,𝑥 + 𝑓 = 𝑝,𝑡, 𝐷,𝑥 = 𝑞; (2)

here, 𝜎 is the Cauchy stress, 𝑝 is the linear momentum, and 𝐷 is the
lectric displacement. The remaining Faraday equation for electric field

is satisfied by setting 𝐸 = −𝜙,𝑥, where 𝜙 is termed the electric
otential. The microscopic kinetic and kinematic fields in the laminate
re related via the constitutive relations
𝜎
𝐷
𝑝
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, (3)

here 𝐶, 𝐵, 𝐴 and 𝜌 are the stiffness, piezoelectric coefficient, dielectric
oefficient and the mass density, respectively. These properties are
eriodic, such that
( )
𝜉 𝑥 + 𝑛𝑙𝑇 = 𝜉 (𝑥) , 𝜉 = 𝐶,𝐵,𝐴, 𝜌, (4)
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where 𝑛 ∈ Z; 𝑙𝑇 =
∑3
𝑚=1 𝑙𝑚 and 𝑙𝑚 is the length of layer 𝑚, as shown in

ig. 1. This periodicity implies that the kinetic and the kinematic fields
re of the Bloch form

𝛼 (𝑥, 𝑡) = �̂� (𝑥) 𝑒𝑖(𝜅𝑥−𝜔𝑡), �̂�
(

𝑥 + 𝑛𝑙𝑇
)

= �̂� (𝑥) , 𝛼 = 𝜎,𝐷, 𝑝, 𝑢, 𝜙.

(5)

The objective is to determine the effective constitutive relations,
elating the macroscopic fields, which have the form

⟨𝛼⟩ (𝑥, 𝑡) = �̄�𝑒𝑖(𝜅𝑥−𝜔𝑡), �̄� = 𝑙−1𝑇 ∫𝑙𝑇 �̂� (𝑥) dx. (6)

o this end, we first consider the Bloch form of Eq. (3), namely,
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𝑒𝑖(𝜅𝑥−𝜔𝑡). (7)

To relate the mean parts of the kinetic and kinematic fields, we expand
the periodic functions in Eq. (7) in Fourier series, such that

�̂� (𝑥) =
∑

𝐺
�̌�𝐺𝑒𝑖𝐺𝑥, �̌�𝐺 = 𝑙−1𝑇 ∫𝑙𝑇 �̂� (𝑥) 𝑒−𝑖𝐺𝑥dx, �̂� = �̂�, 𝜉, (8)

where {�̌�𝐺} are the Fourier coefficients of �̂� (𝑥); 𝐺 = 2𝜋
𝑙𝑇
𝑚 and 𝑚 ∈ Z.

ubstituting Eq. (8) into Eq. (7) yields
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here 𝐺′ is defined in the same manner as 𝐺 and Eq. (9) contains
very combination of 𝐺′ and 𝐺. Since Eq. (9) holds for any value of
and 𝑡, the sum in the square brackets must be zero. We multiply

hose sums by 𝑒−𝑖𝐺′′𝑥, and integrate the result over the unit cell. Due to
he orthogonality property of the Fourier series, the only non-vanishing
erms are those satisfying the condition 𝐺′′ = 𝐺+𝐺′. Hence, substituting
′′ = 𝐺 into the resultant equation yields
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here (◦)𝐺𝐺′ denotes the Fourier coefficient of (◦) along the basis
unction 𝑒𝑖(𝐺−𝐺′)𝑥. In the same manner, Eq. (2) reads
(

�̂�,𝑥 + 𝑖𝜅�̂� + 𝑓
)

𝑒𝑖(𝜅𝑥−𝜔𝑡) = −𝑖𝜔�̂�𝑒𝑖(𝜅𝑥−𝜔𝑡),
(

�̂�,𝑥 + 𝑖𝜅�̂�
)

𝑒𝑖(𝜅𝑥−𝜔𝑡) = 𝑞𝑒𝑖(𝜅𝑥−𝜔𝑡).
(11)

nce again, we expand the periodic parts to

𝐺
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𝑖 (𝜅 + 𝐺) �̌�𝐺 + 𝑓𝐺
]
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truncation to a finite number of plane waves 𝑁 is carried out for
mplementational purposes, say by −𝑠 ≤ 𝑚 ≤ 𝑠,2 such that 𝑁 = 2𝑠 + 1.

e multiply those sums by 𝑒−𝑖𝐺′′𝑥, and integrate the result over the unit
ell. Due to the orthogonality property of the Fourier series, the only

2 The number of waves that was found sufficient for convergence in this
ork is 41, see Appendix A.
3

non-vanishing terms are those satisfying the condition 𝐺′′ = 𝐺. We can
write for each 𝐺

𝖣𝖳
𝐺𝗁𝐺 = −𝖿𝐺 , (13)

where
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, 𝖿𝐺 =
(

𝑓𝐺
−𝑞𝐺

)

. (14)

We assemble all the equations of each 𝐺 into a single matrix system,
namely,

𝖣𝖳
A𝗁A = −𝖿A, (15)

where 𝖿A is a column vector of 2𝑁 components that assembles all
the Fourier coefficients of 𝑓𝐺 and 𝑞𝐺; 𝗁A is a column vector of 3𝑁
components, which assembles all the Fourier coefficients of �̌�𝐺 , �̌�𝐺 and
�̌�𝐺; and 𝖣A is a 3𝑁×2𝑁 matrix that is composed from 3 diagonal and 3
zero matrices. For further details the reader is referred to Appendix B.
In the same manner, 𝗁A is expressed by assembling the matrix equations
of the constitutive relation in Eq. (10), namely,

𝗁A = 𝖫A
(

𝖩A𝗐A −𝗆A
)

, (16)

where 𝖫A is a 3𝑁 × 3𝑁 matrix that contains the Fourier components
of the material properties. Similarly to 𝖣A, 𝖩A is a 3𝑁 × 2𝑁 matrix
that is composed from 3 diagonal and 3 zero matrices; 𝗐A is a column
vector of 2𝑁 coefficients that assembles the Fourier components of the
electric potential the displacement; and 𝗆A is a column vector of 3𝑁
components that contains the Fourier coefficients of the eigenstrain.
Extracting the average fields – associated with 𝐺 = 0 – from Eq. (16)
yields
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= 𝖫0
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𝖩0�̄� − �̄�
}

+ 𝖫𝑠𝖩𝑠𝗐𝑠, (17)

where 𝖩0 and 𝖫0 are the parts of the matrices that multiply the average
fields and (◦)𝑠 denotes the reduced matrix or vector without the 𝐺 = 0
terms3.

Our next step is to express the terms 𝗐𝑠 using �̄� and �̄�. To this end,
we first write Eq. (15) in the form

𝖣𝖳
A𝖫A

(

𝖩A𝗐A −𝗆A
)

= −𝖿A. (18)

ext, we rewrite Eq. (18) by separating the equations that do not
nclude 𝐺 = 0 and obtain

𝑠𝗐𝑠 = −𝖳
{

𝖩0�̄� − �̄�
}

, (19)

here 𝖰𝑠 is a square matrix whose entries multiply the average fields,
nd 𝖳 contains the terms of the matrix 𝖣𝖳𝖫 which multiply the average
ields. Next, the fluctuating terms of 𝗐 can be expressed using its
verage value and the material properties, such that

𝑠 = −𝖰−1
𝑠 𝖳

{

𝖩0�̄� − �̄�
}

. (20)

ubstituting Eq. (20) into Eq. (17) yields

̄ = 𝖫0
{

𝖩0�̄� − �̄�
}

− 𝖫𝑠𝖩𝑠𝖰
−1
𝑠 𝖳

{

𝖩0�̄� − �̄�
}

. (21)

e can now identify the effective properties that act on the macro-
copic kinematic fields, i.e., on

{

𝖩0�̄� − �̄�
}

, namely,

�̃� �̃�† �̃�
�̃� −�̃� �̃�
�̃�† �̃� † �̃�

⎞

⎟

⎟

⎠

∶= 𝖫0 − 𝖫𝑠𝖩𝑠𝖰
−1
𝑠 𝖳. (22)

3 Here 𝖫0 and 𝖫𝑠 is a 3 × 3 matrix and a 3 × (3𝑁 − 3) matrix, respectively;
𝖩0 and 𝖩𝑠 is a 3 × 2 matrix and a (3𝑁 − 3) × (2𝑁 − 2) matrix, respectively; �̄�
and 𝗐𝑠 is a vector with 2 components and a vector with 2𝑁 , respectively, and
�̄� is a vector with 3 components.
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The effective properties (22) are of the form reported in Pernas-
Salomón and Shmuel (2020b,a) and Muhafra et al. (2022): they are
nonlocal in space and time, i.e., functions of 𝜅 and 𝜔; and include two
pairs of adjoint properties – the Willis couplings �̃�, �̃�† and the elec-
tromomentum couplings �̃� , �̃� † – which are absent in the microscopic
elations. In this work, we focus on maximizing the electromomentum
oupling at the long wavelength limit, namely at 𝜅 = 0, in which case
̃ = �̃�† and �̃� = �̃� †. In this limit, the electromomentum coupling
like the Willis coupling (Sieck et al., 2017) – is nonzero only when

here is no inversion symmetry (Pernas-Salomón and Shmuel, 2020b).
ote that while a finite sample or a single scatterer may exhibit broken

nversion symmetry when made with two constituents (Muhlestein
t al., 2017; Pernas-Salomón et al., 2021), this is impossible when
onsidering a biphasic infinite periodic medium; hence, in the opti-
ization we consider trilayer unit cells, where each layer is made of
different material. We further restrict attention to the low frequency

ange, where the electromomentum coefficient is expected to depend
inearly on the frequency (Pernas-Salomón and Shmuel, 2020b; Pernas-
alomón et al., 2021); Accordingly, we optimize �̃� at 2 kHz. (Indeed,
ur calculations show that in the range 0 - 10 kHz, �̃� grows linearly
ith the frequency.) Henceforth, the matrix in Eq. (22) will be denoted
y 𝖪. In what follows, we analyze 𝖪, with the understanding that the
omponent that is relevant to this work is 𝐾23.

. Discrete material choice optimization

We begin by presenting a discrete material choice approach, where
he base materials that compose the periodic structure are chosen from
predefined set of available materials given in Table 1. We focus on
laminate made of three constituents, optimize it over the choice of

he materials, and evaluate simultaneously the length of each layer
hat leads to the optimal design, while the total length of the periodic
ell is fixed to 3mm. Thanks to the use of standard base materials, the
esults of this design parameterization are directly applicable and can
ontribute significantly to practical implementation. As the optimiza-
ion is based on discrete variables and the number of design variables
s small, a genetic algorithm (GA) is used for solving the optimization
roblem.

The design variables are assigned to the choice of material in each of
he three material layers, from a library of candidate materials, and to
he length of each material phase. This corresponds to the maximization
roblem

aximize
𝑦𝑗 ,𝑙1 ,𝑙2

|�̃� |,

ubject to 𝑦𝑗 ∈ [1, 2,… , 10], 𝑗 = 1, 2, 3,

𝑙1 + 𝑙2 ≤ 𝑙𝑇 ,

𝑙1, 𝑙2 ≥ 0,

(23)

where 𝑦𝑗 denotes the pointer to a discrete material that is a member
of Table 1. For example, if 𝑦2 = 3 then the second layer is Al2O3. The
length of the third layer is computed explicitly as the complementary of
the total length, hence, it is not considered as a design variable. Note
that for each minimal (negative) value of �̃� , there is an equivalent
maximal (positive) value of �̃� that can be designed by flipping the
order of the structure, since the sign of �̃� depends on the coordinate
system (Pernas-Salomón et al., 2021). Other operations can also yield
equivalent designs with the same absolute value of �̃� , as will be
discussed in the next section. Hence, our optimization implementation
was to minimize the objective without referring to the absolute value,
namely, to obtain the most negative electromomentum coupling.

In general, when using optimization methods, the optimization
process might end up with a local minimum instead of a global one,
and the outcome can strongly depend on the initial starting point of the
4

whole process. Hence, some form of verification is needed. We define
Fig. 2. The optimal design according to the discrete material choice approach, found
by the GA. Each color represents a different material. The lengths of the layers are
2.052 mm, 0.106 mm and 0.842 mm and |�̃� | = 6.312 ⋅ 10−7 Cs/m3.

confidence parameter to determine the threshold for a satisfactory
olution. The parameter is computed as follows

=
(

𝐸1𝐸2
)0.5 ,

1 =
𝑅best
𝑅total

,

𝐸2 = 𝑒
−2

𝐸avg−𝐸best
𝐸best ,

(24)

where multiple runs have been considered; 𝑅best is the number of runs
that resulted in the optimal solution; 𝑅total is the total number of runs;
𝐸avg and 𝐸best are the average and optimal electromomentum coupling
out of all the outcomes, respectively. The minimum confidence required
for ending the search for the optimal design depends on the number of
runs, as presented in Table 2, together with the calculated confidence
of the process.

Our results show that the optimal structure is 2.052 mm PMN-PT Sin-
gle Crystal X2B–0.106 mm PMMA–0.842 mm Soft PZT HK1HD, (Fig. 2),
yielding �̃� = 6.312 ⋅ 10−7 Cs/m3, which is one order of magnitude
larger than the electromomentum coefficient of the reference laminate.
We observe that the optimizer provided a laminate with high contrast
between the properties of its constituents: PMMA has the smallest value
of each one of the electromechanical properties; PMN-PT Single Crystal
X2B has the largest piezoelectric coefficient and mass density; PZT
HK1HD has the largest dielectric coefficient and second-largest mass
density. The asymmetry is not only in the material properties but also
in the geometry: the middle layer is very thin with respect to the other
two layers. The above features reoccur in subsequent sections.

4. Gradient-based optimization

The efficiency of genetic algorithms strongly depends on the number
of design variables, exhibiting a sharp decline when the number of
design variables increases. Even though the one-dimensional problem
that we address does not require a large number of design variables,
the capability to optimize with a large number of variables is desirable
in general, for example, in extensions of the current work to higher-
dimensional problems. In such cases, gradient-based optimization is
more suitable, and this section is dedicated to optimizations using
continuous variables that is solved by such gradient-based algorithms.
In its most general form, the optimization problem includes design
variables that govern the material properties and the geometry of
each of the three material phases. An essential building block is the
derivation of the analytical sensitivity analysis of the objective function
with respect to the design variables, which we carry out in the sequel.

The general problem consists of finding the optimal material prop-
erties and the optimal length of each layer. This leads to the following
maximization problem

maximize
𝑧𝑚𝑛 ,𝑙1 ,𝑙2

|�̃� |,

subject to 𝑙1 + 𝑙2 ≤ 𝑙𝑇 ,

𝑙1, 𝑙2 ≥ 0,

𝑧𝑚𝐿 ≤ 𝑧𝑚𝑛 ≤ 𝑧𝑚𝑈 ∀𝑚 = 1…4, 𝑛 = 1…3,

(25)

where 𝑧𝑚𝑛 denotes the material property 𝑚, i.e., 𝐵, 𝐴, 𝐶, 𝜌, in this
rder, of layer 𝑛. For example, 𝑧 is the dielectric coefficient of the
23
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Table 1
The library of candidate materials for the discrete optimization formulation (23).
Material 𝐶 [GPa] 𝜌 [kg/m3] 𝐵 [C/m2] 𝐴 [nF/m]

PZT4 115 7500 15.1 5.6
BaTiO3 165 6020 3.64 0.97
Al2O3 300 3270 0 0.079
PMMA 3.3 1188 0 0.023
PZT, Navy type II PZT-5H 50 7500 29 30.1
LiNbO3 200 4650 1.3 0.25
PMN-PT Single Crystal X2B 100 8100 200 53.1
Quartz 86 2650 0.17 0.04
Soft PZT HK1HD 50 8000 39 60.2
Hard PZT Type I 50 7900 15 11.5
T

a

s
A
p

Table 2
Required and calculated confidence for ending the Genetic Algorithm search.

Number of runs Minimum confidence required The calculated confidence

10 0.8 0.8323
20 0.5 0.8326

Table 3
Upper and lower limits for the material properties in
Eq. (25).

Upper limits Lower limits

B [C/m2] 200 0
A [nF/m] 60.2 0.023
C [GPa] 300 3.3
𝜌 [kg/m3] 1188 8100

third layer. The notation 𝑧𝑚𝐿 and 𝑧𝑚𝑈 represents the lower and upper
limits of property 𝑚, respectively. Each material property is optimized
independently, thus relaxing the constraint on the relation between
the various material properties. The purpose of this FMO (Zowe et al.,
1997) is twofold: first, it delivers a theoretical upper bound on the
electromomentum coupling; second, it provides guidelines on how to
compose a laminate that maximizes �̃� .

In order to obtain results with some correlation to realistic material
properties, the design variables are limited in-between the extreme
properties among the real materials considered in Section 3, as pre-
sented in Table 3. The material properties were normalized with respect
to the same limits. The normalized properties are computed as follows

𝜒𝑚 =
𝜒𝑝ℎ𝑦𝑠 − 𝜒𝐿
𝜒𝑈 − 𝜒𝐿

, (26)

here 𝜒𝑚 and 𝜒𝑝ℎ𝑦𝑠 are the normalized and the physical property, re-
pectively; and 𝜒𝐿 and 𝜒𝑈 are the lower and upper limits, respectively.

.1. Sensitivity analysis

We carry out a differentiation of the objective function with respect
o each one of the design variables, i.e., the lengths of the first two
ayers and the material properties of each layer. Considering first the
ength variables, the derivative of Eq. (22) using the product rule yields

𝜕𝖪
𝜕𝑙𝑛

= −

[

𝜕𝖫𝑠
𝜕𝑙𝑛

𝖩𝑠𝖰
−1
𝑠 𝖳 + 𝖫𝑠𝖩𝑠

𝜕𝖰𝑠
−1

𝜕𝑙𝑛
𝖳 + 𝖫𝑠𝖩𝑠𝖰

−1
𝑠
𝜕𝖳
𝜕𝑙𝑛

]

. (27)

ince the PWE expands the governing- and constitutive equations in
ourier series, the entries in each matrix listed in Eq. (27) are basically
ourier coefficients, as given in Eq. (8). Thus, differentiating 𝜉𝐺 and
ollowing the same procedure yields the derivatives that we are looking
or, namely 𝜕𝖫𝑠

𝜕𝑙𝑛
, 𝜕𝖰𝑠𝜕𝑙𝑛

and 𝜕𝖳
𝜕𝑙𝑛

. Since we are analyzing trilayer laminates,
the integral is divided into three parts, namely,

𝜉𝐺 = 𝑙−1𝑇

⎡

⎢

⎢

⎢

𝑙1

∫ 𝜉1e−𝑖𝐺𝑥dx +

𝑙2

∫ 𝜉2e−𝑖𝐺𝑥dx +

𝑙3

∫ 𝜉3e−𝑖𝐺𝑥dx

⎤

⎥

⎥

⎥

. (28)
5

⎣

0 𝑙1 𝑙2
⎦

Then, following the product rule, the derivative is expressed as

𝜕𝜉𝐺
𝜕𝑙1

= 1
𝑙𝑇

{

𝜉1𝑒
−𝑖𝐺(𝑙1) + 𝜉2

[

𝑒−𝑖𝐺(𝑙1+𝑙2) − 𝑒−𝑖𝐺(𝑙1)
]

+ 𝜉3
[

𝑒−𝑖𝐺(𝑙1+𝑙2+𝑙3) − 𝑒−𝑖𝐺(𝑙1+𝑙2)
]}

, (29)
𝜕𝜉𝐺
𝜕𝑙2

= 1
𝑙𝑇

{

𝜉2𝑒
−𝑖𝐺(𝑙1+𝑙2) + 𝜉3

[

𝑒−𝑖𝐺(𝑙1+𝑙2+𝑙3) − 𝑒−𝑖𝐺(𝑙1+𝑙2)
]}

, (30)

𝜕𝜉𝐺
𝜕𝑙3

= 1
𝑙𝑇

{

𝜉3[𝑒−𝑖𝐺(𝑙1+𝑙2+𝑙3)]
}

. (31)

he chain rule yields
𝑑(⋅)
𝑑𝑙𝑗

=
𝜕(⋅)
𝜕𝑙𝑗

+
𝜕(⋅)
𝜕𝑙3

𝜕𝑙3
𝜕𝑙𝑗

, 𝑗 = 1, 2, (32)

nd we recall that total length of the periodic cell is fixed, hence
𝑑(⋅)
𝑑𝑙𝑗

=
𝜕(⋅)
𝜕𝑙𝑗

−
𝜕(⋅)
𝜕𝑙3

, (33)

where (⋅) denotes the matrices 𝖫𝑠, 𝖰𝑠 and 𝖳. Now that we have the
derivatives above, we can follow the same process as described in
Section 2, and obtain the desired derivatives in the same manner as
in computing 𝖫𝑠, 𝖰𝑠 and 𝖳. Note that according to Eq. (27), one must
compute the derivative of 𝖰−1

𝑠 , and this is carried out using the relation

𝜕𝖰−1
𝑠

𝜕𝑙𝑗
= −𝖰−1

𝑠 ⋅
𝜕𝖰𝑠
𝜕𝑙𝑗

⋅ 𝖰−1
𝑠 . (34)

The sensitivities with respect to material properties are derived
imilarly to the procedure outlined above for the length variables.
nalogously to Eq. (27), the sensitivity with respect to any material
roperty is expressed as

𝜕𝖪
𝜕𝑧𝑚𝑛

= −

[

𝜕𝖫𝑠
𝜕𝑧𝑚𝑛

𝖩𝑠𝖰
−1
𝑠 𝖳 + 𝖫𝑠𝖩𝑠

𝜕𝖰−1
𝑠

𝜕𝑧𝑚𝑛
𝖳 + 𝖫𝑠𝖩𝑠𝖰

−1
𝑠

𝜕𝖳
𝜕𝑧𝑚𝑛

]

. (35)

Again, the entries of the matrices are Fourier coefficients, therefore the
derivative of Eq. (28) with respect to the material properties is

𝜕𝜉𝐺
𝜕𝑧𝑚1

= −1
𝑖𝐺𝑙𝑇

[

𝑒−𝑖𝐺(𝑙1) − 1
]

, (36)

𝜕𝜉𝐺
𝜕𝑧𝑚2

= −1
𝑖𝐺𝑙𝑇

[

𝑒−𝑖𝐺(𝑙1+𝑙2) − 𝑒−𝑖𝐺𝑙1
]

, (37)

𝜕𝜉𝐺
𝜕𝑧𝑚3

= −1
𝑖𝐺𝑙𝑇

[

𝑒−𝑖𝐺(𝑙1+𝑙2+𝑙3) − 𝑒−𝑖𝐺(𝑙1+𝑙2)
]

. (38)

Henceforth, a procedure analogous to the PWE is carried out to obtain
the required sensitivities, namely 𝜕𝖫𝑠

𝜕𝑧𝑚𝑛
, 𝜕𝖰𝑠𝜕𝑧𝑚𝑛

and 𝜕𝖳
𝜕𝑧𝑚𝑛

. Note that we
have compared the evaluation of the analytical expressions for the
derivatives with numerical derivatives that were obtained by finite
differences. This comparison yielded an excellent agreement, thereby
verifying the correctness of our sensitivity analysis.

4.2. Test case: optimization over the lengths

We begin our numerical investigation with a benchmark problem of
length optimization; this simple problem allows us to graphically verify
our optimization method.
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Table 4
Results of length optimization using gradient-based optimization. The optimal lengths of the layers in the first composition are 1.38 mm, 1.28 mm and 0.3979 mm, and for the
second composition they are 0.69 mm, 2.13 mm and 0.19 mm. Each color represents a different material. Both optimal designs exhibit a structure with one relatively thin layer.

Composition �̃� : Equally divided design [Cs/m3] �̃� : Optimal design [Cs/m3]

PZT4-BaTiO3-Al2O3

0 1 2 3

𝑋 [mm]

�̃� = −5.88 ⋅ 10−9

0 1 2 3

𝑋 [mm]

�̃� = −8.46 ⋅ 10−9

Al2O3-BaTiO3-PMMA
0 1 2 3

𝑋 [mm]

�̃� = −2.34 ⋅ 10−9

0 1 2 3

𝑋 [mm]

�̃� = 9.52 ⋅ 10−9
We consider two triplets of materials. The first triplet consists of the
materials PZT4, BaTiO3 and Al2O3. The graphical solution is presented
in Fig. 3(a), where we observe that the optimal design is located near
the diagonal. This means that the third layer should be thin in order
to maximize the absolute value of �̃� , which is found to be 8.462 ⋅ 10−9
Cs/m3. Solving the problem by a numerical optimization scheme using
the method of moving asymptotes (Svanberg, 1987), we obtain the
same result with the iterative convergence as plotted in Fig. 3(b). The
optimal solution is characterized by the material distribution of 𝑙1 =
1.38 mm, 𝑙2 = 1.28 mm and 𝑙3 = 0.3979 mm.

The second triplet consists of the materials Al2O3, BaTiO3 and
PMMA, which corresponds to the reference laminate when all layers
have the same length. Fig. 3(c) shows the graphical solution, where
we observe that the optimal design is located near the diagonal. The
gradient-based optimization achieves the same result, �̃� = 9.52 ⋅ 10−9
Cs/m3, as indicated in Fig. 3(d), which shows the iterative convergence
of the gradient-based optimization. This result reflects a fourfold im-
provement with respect to the reference laminate, achieved solely by
changing its geometry. Specifically, this optimal design is the lengths
𝑙1 = 0.69 mm, 𝑙2 = 2.13 mm and 𝑙3 = 0.19 mm, for layers one to three,
respectively. Both results are summarized in Table 4. We observe that
the optimal designs share a common feature: a thin layer with the
lowest mass density and piezoelectric coefficient. This is a repeating
feature throughout the following optimization problems.

The graphical solution in Fig. 3(c) shows that the optimization
problem with this set of materials exhibits several local minima. Using a
gradient-based method, this might lead to results that depend heavily
on the initial structure. In order to overcome this problem, the opti-
mization process has been divided into two steps. The first step seeks
the optimal region by calculating the objective function at 20 random
points inside the feasible region. Once the best starting point is found,
in the second step we use the gradient-based optimization to steer the
design towards a nearby minimum point.

As inferred from Eq. (25), the length of the third layer is not a design
variable. This may hamper convergence because the maximum change
in the length of the third layer is related to the design variables, which
are the lengths of the two other layers. For example, in cases where
the optimal solution is located near the diagonal, the length of the third
layer is small compared to the first and the second layers. Then a design
change that is suitable for the design variables, might be too liberal
for the third layer and divergence may occur. Therefore, conservative
values of a move limit on the change of the design variables were
imposed. In all examples, a maximum move limit of 0.03 mm was
enforced.

4.3. Optimization over different material properties

Having verified our gradient-based optimization using a test case,
we proceed to investigate optimization problems whose design vari-
ables are chosen material properties, where the rest of the properties
are set to the properties of Navy type II PZT-5H.
6

We begin by considering the design space of the piezoelectric co-
efficient and mass density of each layer, yielding six design variables.
For this case, the optimal electromomentum coefficient is 5.687 ⋅ 10−6

Cs/m3, which is three orders of magnitude greater than that of the
reference laminate. This value is achieved by four equivalent designs,
as displayed in Fig. 4; the properties were color-scaled as yellow (blue)
color denotes the upper (lower) limit value. The same color scaling will
be used in the subsequent results. The optimal design exhibits a large
contrast between the material properties, as 5 out of 6 properties attain
the limit values, and one remaining piezoelectric coefficient attains the
intermediate value 96.25 C/m2. This result qualitatively agrees with
the insights of Pernas-Salomón et al. (2021), who carried out heuristic
homogenization of a single trilayer piezoelectric element, based on
its scattering properties. Specifically, equation 41(f) therein suggests
that the electromomentum coefficient depends on the contrast of 𝐵∕𝐴
between the layers, with some weight that depends on the rest of the
properties. Accordingly, it appears that the optimal laminates maximize
the contrast between the two layers which have the largest weight
function.

The four optimal designs are similar to each other: the mapping
from one optimal design to another is obtained by swapping the first
and the third layer, and/or flipping the contrast of the mass density.
This means that layers with minimal mass density are replaced with
maximal mass density and vice versa; layers with maximal mass density
are replaced with minimal mass density. We refer to this transformation
as the flipping of 𝜌. Each of the two transformation steps alone flips the
sign of �̃� .

We demonstrate these two transformations using the laminates
in Fig. 4a and in Fig. 4d, that share the same arrangement of the
piezoelectric coefficient, but flipped values of the mass density, leading
to the same magnitude with opposite sign of the electromomentum
coefficient. The laminates in Fig. 4a and Fig. 4b have the mirrored
arrangement of 𝐵 and also flipped values of 𝜌, leading to the same value
of �̃� .

The observations above correspond to the direction-dependent re-
sponse of the medium (Pernas-Salomón et al., 2021), captured by the
anisot-
ropic nature of �̃� . As noted by Pernas-Salomón et al. (2021), �̃� flips
sign when the coordinate system is reversed, which is equivalent to the
inversion of the unit cell.

Our second case study optimizes over the mass density and di-
electric coefficient. We find four designs, two of which are displayed
in Fig. 5, which are related through the transformations mentioned
earlier. The optimal coefficient is 4.516 ⋅10−6, which is smaller than the
coefficient that was obtained when optimizing over 𝜌 and 𝐵, yet it is
still three order of magnitude larger than that of the reference laminate.
Interestingly, here all six properties attain limiting values, not only five
as in the optimization over 𝜌 and 𝐵, i.e., the dependency of �̃� on 𝐴 is
different from its dependency on 𝐵.
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Fig. 3. Results of the length optimization. Panels (a) and (b) present the optimal solution for the first composition: (a) Graphical solution; (b) Convergence of the gradient-based
ptimization. Panels (c) and (d) present the optimal solution for the second composition: (c) Graphical solution; (d) Convergence of the gradient-based optimization. In both
ontours the initial (optimal) design is marked with red cross (black dot), and the objective function is multiplied by 109.
The last optimization problem considers all these three material
roperties, i.e., 𝐴,𝐵 and 𝜌, as design variables. Fig. 6 presents two

optimal and equivalent designs of the design variables. Again, the mass
density and dielectric coefficient of all the layers attain the limiting
value, as well as the piezoelectric coefficient of two out of the three
layers. The resultant electromomentum coefficient is larger by an addi-
tional order of magnitude, in comparison with the coefficient that was
obtained when only pairs of material properties were optimized.

Finally, we report that additional computations (not shown here)
with 𝜌 or 𝐵∕𝐴 as prescribed constant values in the unit cell, lead to zero
�̃� , regardless of the design variables chosen. The fact that constant
𝐵∕𝐴 yields zero �̃� is in agreement with the results of Pernas-Salomón
et al. (2021). However, equation 41(f) in the latter reference, which we
recall is based on the homogenization of a single scatterer, implies that
7

�̃� can be nonzero with constant 𝜌, a result that is different from our
current calculations, which are based on homogenization of periodic
media.

4.4. Complete free material optimization

Fig. 7(a) presents the hypothetical optimal design that is obtained
by removing all design restrictions. Accordingly, the design variables
are the four material properties and the length of the layers. The
resultant electromomentum coefficient is 5.7 ⋅ 10−5 Cs/m3, which is
fourfold the coefficient that was obtained when the optimization was
over the triplet 𝜌, 𝐴 and 𝐵. All the material properties attain the
limiting values, except the piezoelectric coefficient of one single layer.
Interestingly, the optimal stiffness is constant in the cell, the value of
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Fig. 4. Four equivalent optimal designs as an outcome of the FMO over the piezoelectric and the mass density properties. Panels (a) and (b) share the same sign of the
electromomentum coupling, while panels (c) and (d) have the opposite sign with the same magnitude. The properties were color-scaled as yellow (blue) color denotes the upper
(lower) limit value. The optimal |�̃� | for all four designs is 5.687 ⋅ 10−6 Cs/m3.
Fig. 5. Free material optimization over the dielectric and the mass density properties. Panels (a) and (b) show two equivalent optimal designs, where the properties were color-scaled
as yellow (blue) color denotes the upper (lower) limit value, and the optimal |�̃� | is 4.516 ⋅ 10−6 Cs/m3.
Fig. 6. Free material optimization over the piezoelectric, the dielectric and the mass density properties. Panels (a) and (b) show two equivalent optimal designs, where the
properties were color-scaled as yellow (blue) color denotes the upper (lower) limit value, and the optimal |�̃� | is 1.0354 ⋅ 10−5 Cs/m3.
which is the lower limit, corresponding to a soft laminate. The optimal
lengths yield a thin layer (volume fraction of 11%), in-between two
thick layers (volume fractions of 47% and 42%). This result resembles
the one that we obtained in the length optimization problem. Note that,
again, equivalent designs can be obtained by mirroring the periodic
cell and/or flipping the mass density values. Such equivalent design is
shown in Fig. 7(b).

Interestingly, the optimization process not only increases �̃� , but
also increases the relative contribution of both the electromomentum-
and the Willis effects to the effective linear momentum. To show this,
we compare in Fig. 7(c) the momentum ratios �̃�⟨𝑢,𝑥⟩

�̃�⟨𝑢,𝑡⟩
(solid lines) and

�̃� ⟨𝜙,𝑥⟩
�̃�⟨𝑢,𝑡⟩

(dashed lines), in the reference laminate (blue lines) and the
FMO design-based laminate (black lines), as functions of the frequency.
(The reader is referred to Appendix C in the Pernas-Salomón and
Shmuel (2020b) for details in the calculations of

⟨

𝑢,𝑡
⟩

and
⟨

𝜙,𝑥
⟩

.) We
also observe that while �̃�

⟨

𝜙,𝑥
⟩

in the reference laminate is negligible
with respect to �̃�

⟨

𝑢,𝑡
⟩

, it surpasses �̃�
⟨

𝑢,𝑡
⟩

in the optimized laminate.
Note, however, that both contributions to the effective field are

perturbative, having an order of 10−3. We further note that the relative
contribution of the electromomentum coupling to the effective electric
8

displacement field (not shown here) is of the same order, thus also
perturbative. The influence of a large �̃� on the effective response
becomes evident when examining the phase angle of propagating plane
waves. This is carried out in Fig. 8, which shows the phase angle of
(a) forward- and (b) backward waves as functions of the frequency;
there, solid black (blue) curves denote the phase angle in the open
(short) circuit of the optimal design, and black dots (blue circles)
denote the phase angle in the open (short) circuit of the reference
laminate. We observe that for the reference laminate, the change in
the phase angle that is induced by changing the circuit conditions is
negligible, as the blue and black marks practically coincide, and hence
the phase angle asymmetry between forward- and backward waves is
attributed only to �̃�; this asymmetry at, e.g., 10 kHz is 25.41◦. For
the optimized laminate, the circuit conditions drastically change the
phase angle of both forward- and backward waves. For example, at
10 kHz, the phase angle of forward waves changes from −21.33◦ in
short circuit, to −33.33◦ in open circuit. Similarly, at 10 kHz, the phase
angle of backwards waves changes from 21.33◦ in short circuit, to
33.33◦ in open circuit. Furthermore, the resultant difference between
the phase of forward- and backward waves of the optimized structure is
greater than of the reference laminate. For example, for the optimized
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Fig. 7. Free material optimization over all the material and geometric properties. Panels (a) and (b) show two equivalent optimal designs, where the properties were color-scaled as
yellow (blue) color denotes the upper (lower) limit value, and the optimal |�̃� | is 5.7⋅10−5 Cs/m3. Panel (c) displays the momentum ratios of the off-diagonal couplings: Solid blue
(black) curve represents the Willis momentum ratio, namely, �̃�

⟨
𝑢,𝑥⟩

�̃�
⟨
𝑢,𝑡⟩

for the reference laminate (FMO optimal design), and dashed blue (black) curve denotes the electromomentum

coupling momentum ratio, namely, �̃�
⟨
𝜙,𝑥⟩

�̃�
⟨
𝑢,𝑡⟩

for the reference laminate.
laminate at, e.g., 10 kHz, the difference between the phase of forward-
and backward waves in short circuit is 42.66◦, and in open circuit the
difference is 66.66◦, cf. a difference of 25.41◦ for the reference laminate
at the same frequency (a difference we recall is independent of the
circuit conditions).

For completeness, we also quantify the change in the phase velocity.
We find that in the reference laminate, the phase velocity is almost
independent of the frequency, and the circuit conditions do not change
it significantly: from 1674.53 m/s in the short circuit to 1674.57 m/s
in the open circuit. In the optimized laminate, again, the phase velocity
depends very weakly on the frequency; however, the velocity changes
significantly between the two circuit conditions: from 1840.56 m/s
in the short circuit to 2578.49 m/s in the open circuit. This change
between the reference- and optimized laminate is not attributed to
the increase in �̃� , as evident by the fact that the phase velocity still
depends very weakly on the frequency, but to the increase in �̃� and �̃�.

Next, to quantify the contribution of the geometrical variables to the
optimization, we optimize next only over the four material properties,
keeping the length of each layer fixed and equal to 1 mm. The resultant
electromomentum coefficient is 4.192 ⋅ 10−5 Cs/m3. This value is about
71% of the coefficient that was obtained when the geometrical and
material parameters were included in the design space. Two of the
equivalent, optimal designs are displayed in Fig. 9. These laminates are
different from those that were obtained so far, as none of the layers
exhibits a maximal piezoelectric coefficient.

4.5. Optimization over the designable mass density and stiffness

The results of the previous section provide a hypothetical upper
bound for the electromomentum coefficient, which is accessible only if
all material properties can be engineered independently. The significant
progress on the design of engineered stiffness and mass density (Wu
et al., 2021; Dalela et al., 2021), motivates us to term the optimal
design of 𝐶 and 𝜌 as the applicable design. Fig. 10 shows the solution
of this optimization over 𝐶 and 𝜌, when the rest of the properties are
chosen according to the DMO optimal result (Fig. 2). The resultant
electromomentum coefficient is 1.282 ⋅ 10−6 Cs/m3, which is only one
order of magnitude lower than the hypothetical upper bound. Here
again, the optimization process delivers a constant minimal stiffness,
9

Table 5
The electromomentum coefficient of the reference laminate (equispaced Al2O3, BaTiO3
and PMMA layers); the optimal laminates that were reported in this work, and the
relative improvement with respect to the reference laminate coefficient.

|�̃� | [Cs/m3] Relative improvement
ratio

The reference laminate 2.342 ⋅ 10−9 –
DMO 6.312 ⋅ 10−7 269.51
Length optimization 9.52 ⋅ 10−9 4.06
FMO: B and 𝜌 5.687 ⋅ 10−6 2428.26
FMO: A and 𝜌 4.516 ⋅ 10−6 1928.27
FMO: B, A and 𝜌 1.0354 ⋅ 10−5 4421.01
FMO: all properties 4.192 ⋅ 10−5 17899.23
FMO: all properties and length 5.7 ⋅ 10−5 24338.17
Synthesizing C and 𝜌 1.282 ⋅ 10−6 547.40

and maximizes the contrast of 𝜌 in the cell, as it attains the lowest limit
in layers two and three, and the upper limit in layer one.

A summary of the optimal electromomentum coefficients, together
with the reference laminate and the improvement relatively to it, is
given in Table 5.

5. Summary

A prominent challenge in engineering today is to control elastic
waves; metamaterials exhibiting the electromomentum effect (Pernas-
Salomón and Shmuel, 2020b) offer a way to tune the phase velocity
and generate asymmetry in the phase angle of such waves (Pernas-
Salomón and Shmuel, 2020b; Pernas-Salomón et al., 2021). To make
these phenomena more pronounced, it is required to design these
metamaterials with a large electromomentum coefficient. In this work,
we have utilized discrete material-, topology- and free material op-
timization methods to maximize the electromomentum coupling of
periodic piezoelectric trilayer laminates in the low frequency, long-
wavelength limit. These optimization methods are essentially inverse
homogenization methods, since we have formulated the objective func-
tion, namely, the electromomentum coefficient, as the end result of a
rigorous homogenization process (Pernas-Salomón and Shmuel, 2020b;
Muhafra et al., 2022).
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Fig. 8. The phase angle of (a) forward- and (b) backward waves as functions of the frequency. Solid black (blue) curves denote the phase angle in the open (short) circuit of the

optimized laminate, and black dots (blue circles) denote the phase angle in the open (short) circuit of the reference laminate.
Fig. 9. Free material optimization over all the material properties with the length held fixed. Panels (a) and (b) show two equivalent optimal designs, where the properties were

color-scaled as yellow (blue) color denotes the upper (lower) limit value, and the optimal |�̃� | is 4.192⋅10−5 Cs/m3.
Fig. 10. Optimization over the designable mass density and stiffness. The optimal
design is the result of optimizing the composition of the DMO optimal result (Fig. 2)
over continuous mass density, stiffness and length. The lengths of the laminates are
2.0489 mm, 0.1273 mm and 0.8238 mm. The properties were color-scaled as yellow (blue)
color denotes the upper (lower) limit value. The optimal objective is 1.282 ⋅10−6 Cs/m3.

The discrete material optimization, which uses a predefined set
of real materials as its design space, has yielded an electromomen-
tum coefficient that is two orders of magnitude larger than the arbi-
trary laminate that was first analyzed by Pernas-Salomón and Shmuel
(2020b). We observed that the optimization yields a choice of materials
that tends to maximize the contrast between their electromechanical
properties, in a unit cell that comprises one thin layer in-between two
thick layers.

The free material optimization uses a design space with continu-
ous variables, the values of which are bounded in-between the ex-
treme values of the materials considered earlier. We have employed
gradient-based algorithms that were implemented together with a sen-
sitivity analysis of the objective function. Using these algorithms, we
10
Fig. 11. The electromomentum coupling versus the number of Fourier waves used.
The black, red and blue curves denote the high, medium and low contrast structures,
respectively. The three curves show convergence at 𝑁 = 35.

have solved optimization problems whose design variables are pairs
of the mass density and one of the electromechanical properties: the
dielectric-, piezoelectric- or stiffness coefficients. The rest of the proper-
ties were set to the properties of the reference laminate. We have found



International Journal of Solids and Structures 254–255 (2022) 111909M. Kosta et al.

M
w
c
p
o

A
m

𝖫

that the optimal values of each one of these pairs enlarge the electromo-
mentum coefficient by another order of magnitude, in comparison with
the optimal laminate that the discrete material optimization delivered.
We observed that the pair that demonstrated the best improvement
was with the piezoelectric coefficient. We further found that when all
material properties are designable, the electromomentum coefficient is
enlarged by another order of magnitude.

The optimal laminates reveal how the electromomentum depends
on the contrast in the electromechanical properties between the layers.
Specifically, we observed that the optimization tends to maximize the
electromechanical properties in certain layers, and minimize the same
properties in the remaining layers. Two exceptions are the piezoelectric
coefficient, which, while tending to the two extreme values in two
layers, tends to an intermediate value at the remaining layer; and the
stiffness, which the optimization minimizes throughout the whole cell.
The optimal laminates also show that the geometry that maximizes the
electromomentum coefficient is of a thin layer, in-between two thick
layers.

Collectively, our results provide guidelines for the design of meta-
materials with maximum electromomentum coefficient, paving the way
for future work on their integration in wave control applications.
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Appendix A. The convergence of the PWE method

To examine the convergence of the method, the electromomentum
coupling was evaluated for a combination of three fixed materials.
Results show convergence at 30 Fourier waves, as shown in Fig. 11.

oreover, to examine the rate of convergence, three different divisions
ere considered; one is equally divided, one with one short layer

ompared to the other two layers and the third is the average of the
revious two. As expected, the higher the contrast between the length
f each layer, the slower the rate of convergence of the method.

ppendix B. Detailed expressions for the matrices in the PWE
ethod

The matrices can be divided into sub-matrices following

A =
⎛

⎜

⎜

⎝

𝖫(1,1) 𝖫(1,2) 𝖫(1,3)

𝖫(2,1) 𝖫(2,2) 𝖫(2,3)

𝖫(3,1) 𝖫(3,2) 𝖫(3,3)

⎞

⎟

⎟

⎠

,𝖣A =
⎛

⎜

⎜

⎝

𝖣(1,1) 𝖣(1,2)

𝖣(2,1) 𝖣(2,2)

𝖣(3,1) 𝖣(3,2)

⎞

⎟

⎟

⎠

𝖳

, 𝗁A =
⎛

⎜

⎜

⎝

𝗁(1)

𝗁(2)

𝗁(3)

⎞

⎟

⎟

⎠

,

𝖩A =
⎛

⎜

⎜

⎝

𝖩(1,1) 𝖩(1,2)

𝖩(2,1) 𝖩(2,2)

𝖩(3,1) 𝖩(3,2)

⎞

⎟

⎟

⎠

,𝗐A =
(

𝗐(1)

𝗐(2)

)

,𝗆A =
⎛

⎜

⎜

⎝

𝗆(1)

𝗆(2)

𝗆(3)

⎞

⎟

⎟

⎠

, 𝖿A =
(

𝖿 (1)

𝖿 (2)

)

,

(39)
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where the components of the matrix 𝖫A are simply a sub-matrices of
the material properties, namely

𝖫(1,1)𝐺𝐺′ = �̌�𝐺𝐺′ ,𝖫(1,2)𝐺𝐺′ = �̌�𝐺𝐺′ ,

𝖫(2,1)𝐺𝐺′ = �̌�𝐺𝐺′ ,𝖫(2,2)𝐺𝐺′ = −�̌�𝐺𝐺′ ,

𝖫(3,3)𝐺𝐺′ = �̌�𝐺𝐺′ ,𝖫(1,3)𝐺𝐺′ = 𝖫(2,3)𝐺𝐺′ = 𝖫(3,1)𝐺𝐺′ = 𝖫(3,2)𝐺𝐺′ = 0̌𝐺𝐺′ ,

(40)

and as has been mentioned before, 𝖣A is composed of three diagonal
matrices and three zero matrices, namely

𝖣(1,1)
𝐺𝐺′ = 𝖣(2,2)

𝐺𝐺′ = 𝛿𝐺𝐺′ 𝑖 (𝜅 + 𝐺) ,

𝖣(3,1)
𝐺𝐺′ = 𝛿𝐺𝐺′ 𝑖𝜔,

𝖣(1,2)
𝐺𝐺′ = 𝖣(2,1)

𝐺𝐺′ = 𝖣(3,2)
𝐺𝐺′ = 0̌𝐺𝐺′ ,

(41)

in the same manner, 𝖩A is in the form

𝖩(1,1)𝐺𝐺′ = 𝖩(2,2)𝐺𝐺′ = 𝛿𝐺𝐺′ 𝑖
(

𝜅 + 𝐺′) ,

𝖩(3,1)𝐺𝐺′ = −𝛿𝐺𝐺′ 𝑖𝜔,

𝖩(1,2)𝐺𝐺′ = 𝖩(2,1)𝐺𝐺′ = 𝖩(3,2)𝐺𝐺′ = 0̌𝐺𝐺′ .

(42)

The description of the vectors is similar, where 𝗁A is

𝗁(1)𝐺 = �̌�𝐺 , 𝗁(2)𝐺 = �̌�𝐺 ,𝗁
(3)
𝐺 = �̌�𝐺 , (43)

and 𝗐A

𝗐(1)
𝐺′ = �̌�𝐺′ , 𝗐(2)

𝐺′ = �̌�𝐺′ , (44)

and 𝖿A definitely

𝖿 (1)𝐺 = 𝑓𝐺 , 𝖿 (2)𝐺 = −𝑞𝐺 , (45)

and for 𝗆A

𝗆(1) = �̌�𝐺 , 𝗆(2) = 0,𝗆(3) = 0. (46)
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