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A B S T R A C T

Spherical elastic shells commonly appear both in nature and man-made devices. Often, their functionality
is governed by an incoming- or outgoing flux of fluid. The transient traction that the fluid exerts in the
process causes the shell to depart from sphericity. Here, we develop a framework for determining non-spherical
axisymmetric deformations, by combining tools from nonlinear continuum mechanics, structural mechanics,
and asymptotic analysis. We apply our framework to analyze an exemplary problem of a Mooney–Rivlin shell
that is filled by viscous fluid. Collectively, our framework and the insights gained from its application, promote
the understanding of the mechanics of such fluid-filled deformable membranes and shells.
1. Introduction

The usage of elastic shell is prevalent in various applications, rang-
ing from bio-engineering and medical devices (Yang et al., 2017; Ya-
mamoto et al., 2001; Ismail et al., 2022; Humphrey, 2013; Milic-Emili
et al., 1964) through civil structures to space applications (Jenkins,
2001; Akita et al., 2018). Often, these shell encapsulate gas or liquid,
whose interaction with the deformable solid dictates its functionality,
through the inflation or deflation of the shell (Siéfert et al., 2019;
Manfredi et al., 2019; Bortot and Shmuel, 2018; Ben-Haim et al., 2020,
2022).

The modeling of such fluid-filled elastic shell is a complicated task,
owing to the geometrical and material nonlinearities in the response of
the solid (Gamus et al., 2017; Corneliussen and Shield, 1961; Foster,
1967; Hart-Smith and Crisp, 1967; Firouzi and Żur, 2022; Shmuel,
2015; Shmuel and DeBotton, 2013), triggered by the solid–fluid in-
teraction (Coussios and Roy, 2008; Yang and Church, 2005; Gaudron
et al., 2020; Cassels et al., 2001; Firouzi and Żur, 2022). The majority
of works in this field restrict attention to spherical deformations and/or
uniform loadings (Yang and Feng, 1970; Treloar, 1975; Beatty, 1987;
Hines et al., 2017; Needleman, 1977; Rivlin, 1948; DeBotton et al.,
2013; Adkins and Rivlin, 1952; Ben-Haim et al., 2020; Verron et al.,
1999; Ilssar and Gat, 2020; Dorfmann and Ogden, 2010). However,
while the assumption that the fluid generates uniform pressure on the
shell allows for analytical solutions, it fails to describe the transient
response of the shell during its filling process by the fluid (Ben-Haim
et al., 2022; Ilssar and Gat, 2020); and the few works that go beyond
spherical deformations focus on contact problems of elastic membranes
and rigid substrates (Flory et al., 2007; Srivastava and Hui, 2013;
Liu et al., 2018; Li et al., 2022); bifurcation problems (Haughton and
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Ogden, 1978; Melnikov et al., 2020); and bulging problems (Xiang
et al., 2005; Small and Nix, 1992; Poilâne et al., 2000). There are
additional works that calculate the response of the fluid at prescribed
non-spherical deformations of the membrane (Brenner, 1964; Klugham-
mer et al., 2018), or study the statistical mechanics of active closed
shells or vesicles (Kulkarni, 2023), in cases where the configuration of
the shell is assumed to be known.

Here, we develop a framework for determining non-spherical ax-
isymmetric deformations of the shell, and apply it for an exemplary
problem of inflation and deflation sphere by viscous fluid. To this
end, we combine tools from nonlinear continuum mechanics, structural
mechanics, and asymptotic analysis, in the following order.
(i) We begin by revisiting the classical spherical solutions (DeBot-
ton et al., 2013; Ogden, 1972) obtained using the theory of nonlin-
ear elasticity (Holzapfel, 2000; Green, 1954); and specialize them for
thin shells that are governed by a rather general form of constitutive
equations, incl.
(ii) We employ these solutions as fictitious auxiliary configuration, with
respect to which we model asymmetric deformations as a superposi-
tion of incremental deformations on top of large spherical deforma-
tions (Baek et al., 2007). This so-called small-on-large approach is based
on our assumption regarding the transient traction that the fluid exerts,
namely, that its nonuniform part is an order of magnitude smaller than
its uniform part. We further assume that this pressure is independent of
the feedback from the shell, which essentially decouples the fluid–solid
problems.
(iii) Subsequently, we exploit the fact that the shell is thin in order
to develop the equations that govern its mechanics á la Kirchhoff–
Love shell theory (Love, 1888). This is carried out by integration of
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Fig. 1. A chart consisting of the different parts of the work.
the first-order equations, that were obtained after linearization about
the auxiliary configuration. After some algebra, we obtain differential
equations, which contain bending and tensile terms, for the radial and
tangential incremental displacements.
(iv) We derive analytical solutions in the membrane limit, where bend-
ing is negligible, away from the fixed ends of the solid; near these
ends, bending cannot be neglected, and analytical solutions are not
accessible.

We demonstrate the applicability of our framework by employing it
in exemplary problem of a hollow sphere made of a Mooney–Rivlin
solid that is inflated by viscous fluid. We find that the deviation
from the spherical configuration is larger when the volume of the
incoming flow is larger. Counterintuitively, we further find that the
deflation (inflation) of the shell tends to extend (contract) it in the
vertical direction while contracting (extending) it in the horizontal
direction. We compare our analytical results with fully-coupled COM-
SOL Multiphysics® finite element simulations (Multiphysics, 1998; Inc.,
2020), using its fluid–structure interaction module, in which the exact
finite elasticity equations are solved, to find they are in excellent
agreement, except near the fixed ends of the solid.

We present our framework and analysis in the following order. In
Section 2, we introduce a formal statement of the problem using non-
linear elasticity theory, and develop normalized governing equations
based on asymptotic analysis. In Section 3, we revisit the classical
spherical solution, and develop the equations that govern non-spherical
axisymmetric incremental deformations of the shell with respect to that
spherical deformation. We develop in Section 4 the asymptotic approxi-
mation to the governing equations of the incremental problem, together
with its solution in the membrane limit, where bending moments
are negligible. Finally, in Section 5, we apply our framework to an
exemplary problem, together with a numerical study of its mechanics.
We compare our analytical solution to the membrane equations, with a
numerical solution to the shell equations, and finite element solutions
to the fully-coupled exact equations, in order to demonstrate the range
of applicability of each solution. For convenience, we also provide in
Fig. 1 a chart which schematically describes the different parts of our
analysis. We conclude this paper with a summary of our main results
in Section 6.

2. Problem statement

We consider a thin spherical shell made of an incompressible
isotropic elastic material, whose radius in the reference configuration,
denoted 𝛺𝑅, is 𝑅𝑖, that is connected to a rigid tube of radius 𝑎 and
length 𝓁 [see Fig. 2(a)–(b)], such that the tube is slender, i.e., 𝜖𝑠 ∶=
𝑎∕𝓁 ≪ 1. We further assume that the shell’s radius is much larger than
2

the tube’s radius, i.e., the tube–shell radii ratio satisfies 𝜖𝑎 ∶= 𝑎∕𝑅𝑖 ≪ 1.
The shell is subjected to an inhomogeneous traction, 𝑝, at its inner
boundary, which has the form of a uniform radial component plus
a non-uniform component whose magnitude is of one order smaller
than the uniform component. (This separation of order of magnitudes
is justified by the slenderness of the tube and the small tube–shell
radii ratio; for more details, see the work of Ben-Haim et al. (2022).)
Our objective is to determine the resultant non-spherical deformation
of the shell. This deformation, denoted by 𝜒 , maps material points
from a reference coordinate 𝐗, to their current coordinate 𝐱, such
that 𝐱 = 𝜒(𝐗). Based on our assumption of the structure of 𝑝, it is
useful to introduce an intermediate configuration, denoted by 𝛺0, that
corresponds to the spherical deformation of the shell if the internal
traction was uniform and the tube was not rigid, but inflates in a way
that maintains the spherical configuration [Fig. 2(c)]. We clarify this
configuration is fictitious, and used as an auxiliary, with respect to
which we decompose the actual, non-spherical deformation, reached by
imposing suitable displacements on the connection points, as described
later. The mapping from 𝛺𝑅 to 𝛺0 is denoted by 𝜒0, such 𝐱0 = 𝜒0(𝐗),
and the mapping from 𝛺0 to 𝛺 is denoted by 𝜒 ′(𝐱𝟎). Hence, the
current position 𝐱 can be written as 𝐱 = 𝐱0 + 𝐮, where 𝐮 is the
displacement field with respect to 𝛺0. The corresponding deformation
gradient tensors associated with 𝛺0 and 𝛺 are 𝐅0 = ∇𝐗𝜒0 and 𝐅 = ∇𝐗𝜒 ,
respectively. The relation between the above deformation gradients is
𝐅 = (𝐈 + 𝐇)𝐅0, where 𝐇 = ∇𝐱0𝐮, and 𝐈 is the identity tensor. Owing to
the incompressible constraint, we have that identically det 𝐅 = 1 and
tr𝐇 = 0.

The Cauchy stress tensor that evolves in the hyperelastic, isotropic
incompressible solid is given by the constitutive relation

𝝈 = −𝐈 + 2𝐅 𝜕𝜓
𝜕𝐂

𝐅𝑇 , (1)

where 𝜓(𝐂) is the strain energy density function, 𝐂 = 𝐅𝐓𝐅, and  is a
Lagrange multiplier that accounts for the incompressibility constraint.
In terms of 𝝈, the balance of linear momentum is

𝛁𝐱 ⋅ 𝝈 = 𝟎. (2)

2.1. Normalized formulation and asymptotic analysis

In what follows, we denote by {𝑅,𝛩,𝛷} and {𝑟, 𝜃, 𝜙} the spherical
coordinates of a material point in 𝛺𝑅 and 𝛺, respectively. Here, 𝜃 is
the polar angle, measured from the axis of symmetry to the radial
coordinate 𝑟, and 𝜙 is the azimuthal angle, revolving around the axis of
symmetry, 𝑧. Note that the origin of the spherical coordinate is located
at the center of the spherical shell.
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Fig. 2. (a) Illustration of a hyperelastic shell connected to a rigid tube and subjected to prescribed inhomogeneous traction. The thick line represents the initial non-inflated state,
i.e., the reference configuration; the dashed line represents the auxiliary configuration where the shell maintains a spherical mode, and the smooth line indicates the non-spherical
axisymmetric mode of the inflated shell. Those three elastic configurations are shown separately in - (b) the reference configuration, 𝛺𝑅; (c) a finitely deformed intermediate
configuration, 𝛺0; and (d) the final asymmetric configuration, 𝛺. The initial inner radius of the shell is 𝑅𝑖, and 𝑊0 is its initial thickness . The tube’s length is denoted by 𝓁,
and the angle of the connection points between the shell and the tube is denoted by 𝛩𝑓 = 𝜃𝑓 , which takes a role in the reference and spherical modes. The intermediate spherical
configuration results from the uniform pressure 𝑝𝑠, leading to the inner radius 𝜂0 which marked by the orange arrow. The final configuration results from the non-uniform total
pressure 𝑝(𝜃), which is a sum of the leading-order uniform component and a higher-order spatially varying component. The distance of the shell from the origin is denoted by 𝜂,
which is marked by a green arrow. The right-framed figure (labeled as ‘‘B.C’’) describes the kinematic boundary conditions in the shell–tube connection, and the left-framed figure
(labeled as ‘‘Displacements’’) describes the components of the non-spherical displacement vector in the radial and tangential directions.
In the sequel, we employ the slenderness assumption (𝜖𝑠 = 𝑎∕𝓁 ≪ 1),
and further assume that the thickness of the shell is much smaller that
its inner radius, i.e., accordingly define 𝜖𝑤 ∶= 𝑊0∕𝑅𝑖 ≪ 1, in order to
use these two small parameters in our asymptotic analysis.

It is useful to further introduce the following normalized quantities:

�̂� = 𝑅𝑖𝛁, �̂� = 𝑟
𝑅𝑖
, �̂� = 𝐱

𝑅𝑖
, 𝜆 =

𝜂
𝑅𝑖

; (3a)

�̂�𝑟𝑟 =
𝜎𝑟𝑟
𝑝∗
, �̂�𝑟𝜃 =

𝜎𝑟𝜃
𝜏∗𝑝∗

, �̂�𝜃𝜃 =
𝜎𝜃𝜃
𝑝∗∕𝜖𝑤

, �̂�𝜙𝜙 =
𝜎𝜙𝜙
𝑝∗∕𝜖𝑤

, (3b)

where 𝑝∗ is the characteristic radial loading, 𝜏∗ refers to a scaling
parameter that will determined by the boundary condition of the inner
shell, 𝜂(𝜃; 𝑡) is the distance between the non-spherical shell and the
center of the spherical shell, �̂� is the normalized radial coordinate,
and 𝜆(𝜃; 𝑡) is the distance to the non-spherical shell, normalized by the
reference inner radius [Fig. 2(d)]. According to our assumption on the
structure of 𝑝, we expand the normalized internal non-uniform loading
as follows1

�̂�
(

�̂� = 𝜆(𝜃)
)

∼ �̂�𝑠(𝜆0) + 𝜖𝑠�̂�𝑑 (𝜆0, 𝜃) + (𝜖2𝑠 ), (4)

where �̂� = 𝑝∕𝑝∗ is the normalized inner loading, �̂�𝑠(𝜆0) is the uniform
radial traction, and 𝜖𝑠�̂�𝑑 (𝜆0, 𝜃) is the small non-uniform component.
This assumption allows us to decompose 𝜆 according to 𝜆(𝜃) = 𝜆0 +

1 Mathematically, since we assume that 𝑝 has a prescribed form, the
tube slenderness assumption is not needed. However, the tube’s slenderness
provides a physical justification to this form.
3

𝜖𝑠𝜆1(𝜃)+(𝜖2𝑠 ) where 𝜆0 = 𝜂0∕𝑅𝑖 is the radial stretch at the intermediate
spherical configuration , 𝜂0 is the radius of the shell at the intermediate
configuration, and 𝜆1 is a first-order term that depends on the non-
uniform part of the inner pressure. We recall in this process, we
assumed that the pressure is known, i.e., we neglected the feedback
from the solid. For more details, see Appendix D.4.

The assumption that the intermediate and current configurations
are close allows us to obtain the following perturbation of the current
position

�̂�(𝐗) = �̂�0(𝐗) + 𝜖𝑠�̂�
(

�̂�0(𝐗)
)

+ (𝜖2𝑠 ), (5)

where �̂� = 𝑑𝑟(�̂�, 𝜃)𝐞𝐫+𝑑𝜃(�̂�, 𝜃)𝐞𝜃 , and 𝑑 = 𝑑∕𝑅𝑖𝜖𝑠 are the normalized non-
spherical displacements. This normalization allows us to obtain a form
in which the small parameter 𝜖𝑠 is explicit2. Owing to relation (5), the
gradients of the successive deformation can be written as (Baek et al.,
2007)

𝐅 = 𝐅0 + 𝜖𝑠𝐅1 + (𝜖2𝑠 ), (6)

where 𝐅1 = 𝐇𝐅0. Substituting Eq. (6) into the definition of 𝐂 provides

𝐂 = 𝐂0 + 𝜖𝑠𝐂1 + (𝜖2𝑠 ), (7)

2 Owing to the assumption that 𝐮 is of a different order than 𝐱, its
corresponding dimensionless form is scaled differently, namely, by 𝜖𝑠𝑅𝑖, such
the 𝜖 terms cancel out when recovering back the dimensional equation.
𝑠
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where 𝐂0 = 𝐅𝑇0 𝐅0 and 𝐂1 = 𝐅𝑇0 𝐇𝐅0 + 𝐅𝑇0 𝐇
𝑇𝐅0 = 2𝐅𝑇0 𝐞𝐅0 where

𝐞 = (𝐇+𝐇𝑇 )∕2 is the small strain tensor with respect to the intermediate
configuration. We assume that the normalized Cauchy stress tensor can
also be written in a similar form, namely,

�̂� = �̂�(0) + 𝜖𝑠�̂�(1) + (𝜖2𝑠 ), (8)

where �̂�(0) is the non-dimensional Cauchy stress tensor that evolves
in the intermediate spherical configuration, and �̂�(1) is the additional
on-dimensional Cauchy stresses created from the non-spherical mode.

By linearizing Eq. (1) about 𝐂0, we have that

̂ (0) = −̂(0)𝐈 + 2𝐅0
𝜕�̂�
𝜕𝐂

|

|

|

|𝐂0

𝐅𝑇0 , (9a)

̂ (1) = −̂(1)𝐈 + 2𝐅0
𝜕�̂�
𝜕𝐂

|

|

|

|𝐂0

𝐅𝑇0 𝐇
𝑇 + 2𝐇𝐅0

𝜕�̂�
𝜕𝐂

|

|

|

|𝐂0

𝐅𝑇0 + 2𝐅0
𝜕2�̂�
𝜕𝐂2

|

|

|

|𝐂0

𝐂1𝐅𝑇0 ,

(9b)

where �̂� = 𝜓∕𝜓∗ is the free energy function normalized with respect
to the characteristic magnitude and ̂(⋅) = (⋅)∕𝜓∗ is the normalized
Lagrange multiplier.

3. Solution of the finite deformation and analysis of superposed
deformations

In this section, we first revisit the solution of the finite spherical
deformation. For this purpose, we use the thin-shell approximation to
determine the leading-order relationship between the stretch of the
shell and the inner uniform traction. Subsequently, we analyze the non-
spherical deformation that is superimposed on the finite deformation.
To do so, we analyze the first-order Cauchy stress that is generated and
rewrite the instantaneous constitutive relations in Hook’s law-like form.
Then, we develop the balance equations and boundary conditions that
govern the non-spherical incremental stress in the shell relative to its
spherically inflated state using a Kirchhoff–Love approximation.

In the sequel, we restrict attention to materials that are governed
by constitutive relation of the form

̂ (𝐂) = �̂� (𝐼1(𝐂)) + �̂�(𝐼2(𝐂)), (10)

such that �̂� is a possibly nonlinear function of 𝐼1, while �̂� must be a
linear function of 𝐼2, where

1 = tr 𝐂, and 𝐼2 =
1
2
[

(tr 𝐂)2 − tr (𝐂2)
]

, (11)

are the invariants of 𝐂. Note that a large number of popular models
for rubber admit form Eq. (10), such as Treloar (1943), Mooney
(1940), Gent (1996), and Yeoh models (Yeoh, 1993; Ogden, 1972). We
emphasize that our framework and specifically the governing equations
to be derived, apply to all of these models. In the numerical section to
follow, we use by way of example the Mooney–Rivlin solid.

3.1. Non-linear large spherical deformation of the shell

The solution to the nonlinear problem is given by Green (1954), see
also the works of DeBotton et al. (2013) and Ogden (1972). We sum-
marize its thin shell version here, for completeness. For convenience,
we normalize the reference radial coordinate according to �̂� = 𝑅∕𝑅𝑖.
Accordingly, �̂� = 1 to the leading order, and to the first order �̂� ∈
[1, 1 + 𝜖𝑤].

Owing to the spherical symmetry of the problem and the incom-
pressibility constraint, the finite deformation is given by

̂ = 3
√

𝜆30 + �̂�
3 − 1, 𝜃 = 𝛩, 𝜙 = 𝛷, (12)

here 𝜆0 ⩽ �̂� ⩽ 𝜆0 + 𝜖𝑤𝜆−20 + (𝜖2𝑤), and 𝜃 ∈ [0, 𝜃𝑓 ] where 𝜃𝑓 is the
ngle to the connection points with the tube. We recall that here, we
ictitiously allow the tube to deform in a way that is compatible with
he spherical deformation of the shell, such that its radius increases
4

o �̃� = 𝜆0𝑎 [see Fig. 2(c)]. This fictitious displacement of the tube is
accounted for in the calculation of the final deformation. We further
recall that 𝜆0 is to be determined from the boundary conditions. Owing
to the thin shell assumption and the fictitious compatibility of the
tube, to the leading order, the deformation gradient is constant and
diagonal, having the following representation in our coordinate system
F0 = diag

[

𝜆−20 , 𝜆0, 𝜆0
]

, and thus C0 = diag
[

𝜆−40 , 𝜆20, 𝜆
2
0
]

.
Under the assumption of a shell made of a material that is governed

by Eq. (10), the resultant stress is given by

�̂�(0) = −̂(0)𝐈 + 2
(

�̂�1 + �̂�2𝐼
(0)
1

)

𝐂0 − 2�̂�2𝐂2
0, (13)

where

̂ 𝑖 ≡
𝜕�̂�
𝜕𝐼𝑖

|

|

|

|

(

𝐼 (0)1 ,𝐼 (0)2

)
; 𝑖 = 1, 2, (14)

and 𝐼 (0)𝑖 ≡ 𝐼𝑖(𝐂0). The only non-trivial balance of the linear momentum
quation is in the radial direction, which has the normalized form

𝑤
d�̂�(0)𝑟𝑟
d�̂�

+ 2
�̂�
(

𝜖𝑤�̂�
(0)
𝑟𝑟 − �̂�(0)𝜃𝜃

)

= 0. (15)

Eq. (15) is to be solved in conjunction with the boundary condi-
tions, which are a traction-free outer boundary and a prescribed inner
uniform pressure, �̂�𝑠.

The boundary condition at the outer surface leads to the equation
�̂�(0)𝑟𝑟 = 0 at �̂� ∼ 𝜆0 + 𝜖𝑤𝜆−20 , from which we obtain that the Lagrange
multiplier ̂(0) satisfies

̂(0) = 2
(

𝜆−40 �̂�1 + 2𝜆−20 �̂�2
)

+ (𝜖𝑤). (16)

Next, we integrate Eq. (15) with respect to �̂� from 𝜆0 to 𝜆0 + 𝜖𝑤𝜆−20 ,
and use the equation that results from the inner boundary condition,
namely,

�̂�(0)𝑟𝑟 = −�̂�𝑠(𝜆0), (17)

to find that

�̂�𝑠(𝜆0) = 2𝜆−30 �̂�(0)𝜃𝜃 + (𝜖𝑤). (18)

Relations (13)–(18) provide

�̂�𝑠(𝜆0) = 4
[

(

𝜆−10 −𝜆−70
)

�̂�1+
(

𝜆0−𝜆−50
)

�̂�2

]

+(𝜖𝑤) =
1
𝜆20

d�̂�
d𝜆0

+(𝜖𝑤). (19)

The latter relation is in agreement with the works of Beatty (1987)
and Ogden (1972). In the next subsection, we develop the equations
that govern the non-spherical incremental deformations of the shell,
relatively to this spherically inflated state, using a thin-shell approxi-
mation.

3.2. Small-on-large non-spherical axisymmetric deformations

We begin by deriving the instantaneous constitutive relations of the
shell about its spherical state. To this end, we recall that the relative
displacement gradient 𝐇 that appears in the incremental constitutive
law (9b) is

𝐻 =
⎡

⎢

⎢

⎣

𝐻𝑟𝑟 𝐻𝑟𝜃 0
𝐻𝜃𝑟 𝐻𝜃𝜃 0
0 0 𝐻𝜙𝜙

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

d𝑑𝑟
d�̂�

1
�̂�

(

d𝑑𝑟
d𝜃 − 𝑑𝜃

)

0

d𝑑𝜃
d�̂�

1
�̂�

(

𝑑𝑟 +
d𝑑𝜃
d𝜃

)

0

0 0 1
�̂�

(

𝑑𝑟 + 𝑑𝜃 cot 𝜃
)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

(20)

his constitutive relation can be reduced to a Hook’s law-like form at
given 𝜆0, using the boundary conditions. Specifically, since the outer
oundary is free of traction, it follows that �̂�(1)𝑟𝑟 vanishes at the outer
oundary, which allows us to calculate ̂(1), namely,

̂(1) = −4
[

(

𝜆−8 − 𝜆0
)

�̂�11 + 𝜆−4�̂�1 +
(

2𝜆−2 − 𝜆0
)

�̂�2

]

𝐻𝑟𝑟 + (𝜖𝑤). (21)
0 0 0
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Fig. 3. (a) A cut of the shell in the intermediate spherical configuration, whose thickness is 𝑤. The green dashed line represents the middle surface element of the thin spherical
shell, and 𝜉 is the radial distance from the middle surface. (b) A differential spherical element and its associated stress resultants 𝑁 , transverse shear stress resultants 𝑄, and stress
couples 𝑀 .
Substituting it back into the constitutive law (9b) provides
[

�̂�(1)𝜃𝜃
�̂�(1)𝜙𝜙

]

=
�̃�(𝜆0)

1 − �̃�2(𝜆0)

[

1 �̃�(𝜆0)
�̃�(𝜆0) 1

] [

𝑒𝜃𝜃
𝑒𝜙𝜙

]

, (22)

where the explicit expressions of �̃�(𝜆0) and �̃�(𝜆0) are given in Ap-
pendix B.

Having Eq. (22) at hand, we proceed to derive the balance equation
in terms of 𝑒𝜃𝜃 and 𝑒𝜙𝜙, using a shell theory approach. We recall that
such an approach is applicable when the normal stress is negligible,
i.e., �̂�(1)𝑟𝑟 ≪ �̂�(1)𝜃𝜃 , �̂�

(1)
𝜙𝜙; and that normals to the shell’s reference natural

surface remain normal. Then, it follows that we can describe the
relative displacement gradient field in terms of its values at the middle
plane and the distance from it: this is Love–Kirchhoff’s assumption.
Accordingly, we define 𝜉 ∈ [−𝑤∕2, 𝑤∕2] as the radial position measured
from the middle surface [Fig. 3(a)].

We introduce the stress resultants 𝑁𝜃𝜃 and 𝑁𝜙𝜙, transverse shear
stress resultant 𝑄𝜃𝜃 , and the stress couples 𝑀𝜃𝜃 and 𝑀𝜙𝜙, defined
by Ventsel et al. (2002) and Beuthe (2008):

𝑁(𝑖)(𝑖) = ∫

𝑤∕2

−𝑤∕2

(

1 +
𝜉
𝜂0

)

𝜎(1)(𝑖)(𝑖)d𝜉, 𝑄𝜃𝜃 = ∫

𝑤∕2

−𝑤∕2

(

1 +
𝜉
𝜂0

)

𝜎(1)𝑟𝜃 d𝜉,

𝑀(𝑖)(𝑖) = ∫

𝑤∕2

−𝑤∕2

(

1 +
𝜉
𝜂0

)

𝜎(1)(𝑖)(𝑖)𝜉d𝜉, (23)

where 𝑖 = 𝜃, 𝜙, in terms of which we rewrite the equilibrium equa-
tion; the explicit expressions for the terms in Eq. (23) are given in
Appendix B.

The solution to the leading order of the balance equations is given
in Section 3.1, and in what follows, we tackle the first-order equations.
In order to express them in terms of 𝑁 , 𝑄 and 𝑀 , we multiply the
radial equation by (𝜂0 + 𝑟)2 sin 𝜃 and the polar equation by (𝜂0 + 𝑟) sin 𝜃.
We integrate the resultant equations with respect to 𝑟 and obtain
d
d𝜃

(

𝑄𝜃𝜃 sin 𝜃
)

−
(

𝑁𝜃𝜃 +𝑁𝜙𝜙
)

sin 𝜃 + 𝜂0(𝑝 − 𝑝𝑠) sin 𝜃 = 0, (24a)

d
d𝜃

(

𝑁𝜃𝜃 sin 𝜃
)

−𝑁𝜙𝜙 cos 𝜃 +𝑄𝜃𝜃 sin 𝜃 = 0, (24b)

where 𝑝−𝑝𝑠 = 𝜖𝑠𝑝∗�̂�𝑠. The third equation is derived by multiplying the
polar equation by 𝑟 and integrating over the thickness, resulting with
d
d𝜃

(

𝑀𝜃𝜃 sin 𝜃
)

−𝑀𝜙𝜙 cos 𝜃 − 𝜂0𝑄𝜃𝜃 sin 𝜃 = 0. (25)

The remaining azimuthal equation is satisfied identically. After some
tedious algebra, as detailed in Appendix C, we obtain the following
5

non-dimensional equations for 𝑑𝑟 and 𝑑𝜃 , namely,

𝜖2𝑤
12𝜆60

(

1 − �̃�2(𝜆0)
)

[(

𝜃 −2
)

 2
𝜃
]

𝑑𝑟+𝜃𝑑𝑟 =
𝜆40

�̃�(𝜆0)
[

𝜃 −
(

1+ �̃�(𝜆0)
)]

�̂�𝑑 , (26)

and
[

𝜃 −
(

1 + �̃�(𝜆0)
)]

𝑑𝜃 = −
(

1 + �̃�(𝜆0)
) d𝑑𝑟
d𝜃

+
𝜖2𝑤
12𝜆20

d
d𝜃

𝜃𝑑𝑟, (27)

where 𝜃 is a linear differential operator defined by

𝜃{∙} ≡ 1
sin 𝜃

d
d𝜃

(

sin 𝜃 d
d𝜃

{∙}
)

+ 2{∙} = d2

d𝜃2
{∙} + cot 𝜃 d

d𝜃
{∙} + 2{∙}. (28)

Eq. (26) constitutes a sixth-order ordinary differential equation
(ODE) for 𝑑𝑟, which has the classical form of an ODE that yields a
solution of boundary layer structure. Specifically, the first term on the
left-hand side is associated with the bending of the shell near the fixed
end of the tube, and the second term on the left-hand side is an ODE
of a membrane under pure tension. Solving Eqs. (26) and (27) requires
six and two boundary conditions, respectively, which we specify next.

3.3. Boundary conditions

The fact that the shell is fixed at the connection points between the
shell and the tube implies that

𝑑𝑟
|

|

|𝜃=𝜃𝑓
= 0. (29)

Furthermore, the angle between the shell and the tube is fixed to 𝜋∕2,
and hence
d𝑑𝑟
d𝜃

|

|

|

|𝜃=𝜃𝑓
= −

𝜆0
𝜖𝑠

cot
(

3𝜋∕2 − sin−1 (𝜖𝑎∕𝜆0)
)

≈ −
𝜖𝑎
𝜖𝑠
. (30)

Owing to the axial symmetry, all the odd derivatives of the radial
displacements at 𝜃 = 0 must vanish, i.e.,

d𝑑𝑟
d𝜃

|

|

|

|𝜃=0
=

d3𝑑𝑟
d𝜃3

|

|

|

|𝜃=0
=

d5𝑑𝑟
d𝜃5

|

|

|

|𝜃=0
= 0. (31)

Additionally, to obtain a physical solution, the displacement field must
be bounded at 𝜃 → 0.

The solution of Eq. (26) when subjected to the above boundary
conditions, is detailed in Section 4. Having this solution at hand, we
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proceed to Eq. (27) for 𝑑𝜃 . The tangential displacement is subjected to
he two boundary conditions

�̂�
|

|

|𝜃=0
= 0 and 𝑑𝜃

|

|

|𝜃=𝜃𝑓
≈ (𝜆0 − 1)𝜖𝑎. (32)

he first of Eq. (32) results from the axial symmetry; the second of
q. (32) enforces the total displacement of connections points with rigid
ube to be null, thereby canceling their fictitious displacement to the
uxiliary configuration [see Fig. 2(a)].

. Asymptotic approximation solution

While Eqs. (26)–(27) can be solved numerically, it is advantageous
o derive an approximated asymptotic solution, with which it is possible
o gain insights on the mechanics of the problem; this is carried out
ext. Our approximation relies on the fact that the solution to Eq. (26)
as a boundary layer structure. Accordingly, we divide the solution to
wo regimes, namely, one that results when retaining only the leading
rder (so-called outer solution), and one that accounts for higher orders
so-called inner solution).

The outer solution is identified with a membrane state, at which the
hell does not carry bending moments (𝑀𝜃𝜃 and 𝑀𝜙𝜙), i.e., the bending
igidity  vanishes [Eq. (B.3)]. However, near the connection with the
ube, the fixed end stiffens the response of the shell to bending, and
ence this approximation is no longer valid. Therefore, at that regime,
e must account for higher-order terms. These two types of solutions
re analyzed next.

.1. Outer solution—Membrane limit

We begin with the outer solution, referred to as the membrane limit.
nder this approximation, the resultant equation is

d2𝑑𝑟
d𝜃2

+ cot 𝜃
d𝑑𝑟
d𝜃

+ 2𝑑𝑟 ∼
𝜆40
(

1 − �̃�(𝜆0)
)

�̃�(𝜆0)
�̂�𝑑 , (33)

where we neglect pressure derivatives under the assumption that they
are small enough in the outer regime. Eq. (33) has an analytical
solution that is constrained by two boundary conditions, associated
with two integration constants. One of these constants multiplies an
expression that is singular at 𝜃 → 0; hence this constant must be null.
It follows that the remaining term satisfies identically the boundary
condition d𝑑𝑟∕d𝜃 = 0 at 𝜃 → 0, and therefore an addition boundary
ondition is required: this second condition is the Prandtl matching
ondition (Vasil’Eva et al., 1995; Gao and Krysko, 2006).

Accordingly, the analytical solution in the outer regime is

�̂�(𝜃)

∼
[

𝐶1 +
𝜆40
(

1 − �̃�(𝜆0)
)

�̃�(𝜆0) ∫

1

cos 𝜃

(

1 +
𝜉
2
ln
(

1 − 𝜉
1 + 𝜉

))

�̂�𝑑
(

cos−1(𝜉)
)

d𝜉
]

cos 𝜃+

+
𝜆40
(

1 − �̃�(𝜆0)
)

�̃�(𝜆0)

(

1 + cos 𝜃
2

ln
(

1 − cos 𝜃
1 + cos 𝜃

))

∫

1

cos 𝜃
�̂�𝑑
(

cos−1(𝜉)
)

d𝜉,

(34)

where 𝐶1 = 𝑑𝑟(0) is the constant to be determined from Prandtl
atching condition. We note that in the numerical examples to follow,
e have determined 𝑑𝑟(0) using COMSOL finite element simulations.

.2. Inner solution—Boundary layer

In order to analyze the equation that is associated with the inner
egime, we employ the local analysis method. To this end, we assume
hat at 𝜃𝑓 , the size of the boundary layer is of order 𝛿 ≪ 1. In this
icinity, we rescale the coordinate 𝜃 by introducing the local variable

=
𝜃𝑓 − 𝜃

∼ (1). (35)
6

𝛿 t
Table 1
The mechanical properties that are used in our numerical study. The density and kine-
matic viscosity of the fluid are associated with Glycerol. The geometrical parameters
are the typical values used by Ben-Haim et al. (2020).

Parameters Notation Value Units

Density 𝜌 1260 Kg/m3

Dynamic Viscosity 𝜇 1.1 Pa s
Elastic Parameter 𝑠1 1.5 MPa
Elastic Parameter 𝑠2 0.15 MPa
Unstressed Radius 𝑅𝑖 5 mm
Unstressed Thickness 𝑊0 50 μm
Tube radius 𝑎 1 mm
Tube length 𝓁 20 cm

Tube slenderness 𝜖𝑠 5 × 10−4

Tube–shell radii ratio 𝜖𝑎 2 × 10−2

Thick-radius ratio 𝜖𝑤 1 × 10−4

Chamber viscous resistance 𝜖𝜇 4 × 10−5

Accordingly, with this substitution of variable, we define 𝑑𝑖𝑛(𝜉) ≡
𝑑𝑟(𝜃(𝜉)), to which we obtain the derivatives with respect to 𝜉 using the
chain rule, namely,

d2

d𝜃2
+ cot 𝜃 d

d𝜃
∼ 1
𝛿2

d2

d𝜉2
+ 1
𝛿(𝜖𝑎 + 𝜉𝛿)

d
d𝜉
. (36)

In the latter relation, we used the first order approximation of cot 𝜃 at
𝜃 → 𝜃𝑓 and 𝜃𝑓 ∼ 𝜋 − 𝜖𝑎. This provides the following equation for 𝑑𝑖𝑛

𝜖2𝑤
12𝜆60

(

1 − �̃�2(𝜆0)
)

(

1
𝛿2

d2

d𝜉2
+ 1
𝛿(𝜖𝑎 + 𝜉𝛿)

d
d𝜉

)3
𝑑𝑖𝑛

∼
𝜆40

�̃�(𝜆0)

(

1
𝛿2

d2

d𝜉2
+ 1
𝛿(𝜖𝑎 + 𝜉𝛿)

d
d𝜉

)

�̂�𝑑 . (37)

We further assume that 𝜖2𝑎 ∼ 𝜖𝑤. This assumption holds as long as the
wall thickness is two orders of magnitude smaller than the radius of
the body, following the thin shell theory assumption. Furthermore, the
entrance opening is one order of magnitude smaller than the radius of
the body. Subsequently, by applying the dominant balance of order of
magnitude, we find that the boundary layer thickness satisfies 𝛿 =

√

𝜖𝑤.
The governing equation for the inner regime becomes

(

d2

d𝜉2
+ 1
𝜉 + 𝜖𝑎𝜖

−1∕2
𝑤

d
d𝜉

)3
𝑑𝑖𝑛

∼
12𝜆100

(

1 − �̃�2(𝜆0)
)

�̃�(𝜆0)

(

d2

d𝜉2
+ 1
𝜉 + 𝜖𝑎𝜖

−1∕2
𝑤

d
d𝜉

)

�̂�𝑑 . (38)

In contrast with Eq. (34), we were not able to obtain an analytical
olution for Eq. (38), and in the sequel we have Matlab numerical
ntegration to solve it.

. Application for inflation and deflation of Mooney–Rivlin shell
y viscous fluid

In this section, we apply the general framework that we developed
o study the non-spherical axisymmetric deformations of a hyperelastic
hell, that is governed by the incompressible Mooney–Rivlin constitu-
ive law, owing to influx/outflux of an incompressible viscous fluid. The
ncompressible Mooney–Rivlin model, aimed at capturing the response
f rubber-like materials, is (Beatty, 1987; Ogden, 1997)
(

𝐼1, 𝐼2
)

= 𝑠1(𝐼1 − 3) + 𝑠2
(

𝐼2 − 3
)

, (39)

here
{

𝑠1,2
}

are two empirically elastic material coefficients, whose
verage equals the shear modulus in the limit of small strains. Note that
n what follows, we use a normalized strain energy density function that
s defined by �̂� = 𝜓∕𝑠1, i.e., 𝜓∗ = 𝑠1.

Since the deformation of the shell is driven by the incoming flux of
he fluid, here the independent variable is the inlet flux, 𝑞(𝑡), generating
he non-uniform pressure. In what follows, we will relate 𝑞(𝑡) to the
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Fig. 4. (a) The pressure–stretch relation (19) of a shell whose properties are given in Table 1. The red mark denotes the configuration that we study in Section 5, where 𝜆0 = 1.2.
b) The distribution of the normalized first-order pressure across the inner radius of the shell as a function of 𝜃. The solid black line is the numerical CFD solution, and the dashed

red line is the analytical solution (46). The inset highlights that the variation away from the fixed end is an order of magnitude of smaller than the variation near the fixed end.
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leading order stretch of the membrane and the corresponding traction.
To this end, we employ the integral form of the mass conservation
equation, namely,

̂(𝑇 ) = 𝑑
𝑑𝑇

[2𝜋𝜖2𝑎
3

√

𝜆20(𝑇 ) − 𝜖
2
𝑎 + ∫

2

𝜙=0 ∫

𝜃𝑓

𝜃=0 ∫

𝜆(𝜃,𝑇 )

�̂�=0
�̂�2 sin 𝜃d�̂�d𝜃d𝜙

]

∼

𝑑
𝑑𝑇

[

4
3
(

𝜆30(𝑇 ) − 1
)

+ 2𝜖𝑠𝜆20(𝑇 )∫

𝜃𝑓

0
𝑑𝑟(𝑇 ; 𝜃) sin 𝜃d𝜃

]

+ 
(

𝜖4𝑎 , 𝜖
2
𝑠 𝜖

2
𝑎
)

(40)

here 𝑞 = 𝑞(𝑡)∕𝑞∗, 𝑞∗ = 𝜋𝑎4𝑝∗∕𝜇𝓁 is the normalized volumetric flux rate,
is the viscosity of the fluid, 𝑇 = 𝑡∕(𝑅𝑖∕𝑣∗) is the non-dimensional time,

nd 𝑣∗ is the typical flow velocity.3 Accordingly, to the leading order,
.e., when 𝜖𝑠 = 0, we have that the stretch-flux relation is

0(𝑇 ) =
[

1 + 3
4 ∫

𝑇

0
𝑞(𝜏)d𝜏

]1∕3
. (41)

Having determined 𝜆0 using 𝑞(𝑡) as per our hypothesis, we now require
that

∫

𝜃𝑓

0
𝑑𝑟(𝜃; 𝑇 ) sin 𝜃d𝜃 = 0, for all 𝑇 > 0. (42)

In the sequel, we will use Eq. (42) as an additional constraint to solve
Eq. (26).

Our next step is to calculate the traction that the fluid applies on
the shell, which requires a specification of the constitutive law of the
fluid. Here, we assume that the fluid is governed by a Newtonian law,
namely,

�̂� = −�̂�𝐈 + 𝜖𝜇
[

�̂��̂� +
(

�̂��̂�
)𝑇 ], (43)

where �̂� = 𝝈∕𝑝∗ is the normalized fluid total stress tensor, 𝑝∗ =
𝑊0𝜓∗∕𝑅𝑖 = 𝜖𝑤𝜓∗ is the characteristic pressure distribution, 𝜖𝜇 =
(𝑎∕𝑅𝑖)3𝜖𝑠 ≪ 𝜖𝑠 is the chamber viscous resistance small parameter, �̂� =
𝒗∕(𝑞∗∕𝜋𝑅2

𝑖 ) is the normalized flow velocity field and 𝐈 is the identity
tensor. Note that 𝜏∗ = 𝜖𝜇 , [see Eq. (3b)]. Eq. (43) implies that the
velocity field contributes only to the first-order term of the stress, and
hence the leading order term of the stress in the fluid corresponds
to a hydrostatic state. To determine Eqs. (24a)–(24b), it is required to
calculate �̂�𝑟𝑟 and �̂�𝑟𝜃 , namely,

�̂�𝑟𝑟 = −�̂�𝑠 − 𝜖𝑠�̂�𝑑 + 2𝜖𝜇
𝜕�̂�𝑟
𝜕�̂�
, and �̂�𝑟𝜃 = 𝜖𝜇

[

�̂� 𝜕
𝜕�̂�

(

�̂�𝜃
�̂�

)

+ 1
�̂�
𝜕�̂�𝑟
𝜕𝜃

]

. (44)

3 For details on the derivation of Eq. (40), the reader is referred to the work
f Ben-Haim et al. (2022).
7

Since 𝜖𝜇 ≪ 𝜖𝑠, we neglect (𝜖𝜇) terms and remain only with (𝜖𝑠). We
also neglect the fluid’s shear stresses and assume that there is only a
radial distribution of loading pressure. Accordingly, we will use the
following approximated form for �̂�𝑟𝑟 and �̂�𝑟𝑟:

̂𝑟𝑟 ≈ −�̂�𝑠 − 𝜖𝑠�̂�𝑑 , and �̂�𝑟𝜃 ≈ 0, at �̂�→ 𝜆, (45)

where �̂�𝑠(𝜆0) = 𝜆−20 d�̂�∕d𝜆0, �̂� = 𝜓∕𝑠1, and 𝜖𝑠�̂�𝑑 (𝜃; 𝑇 ) is the non-uniform
erturbation. Ben-Haim et al. (2022) derived the following solution to
�̂�𝑑

�̂�𝑑 (𝜃; 𝑇 ) = −
𝑞𝜆0
𝜖4𝑎

∞
∑

𝑛=1

(2𝑛 + 3)
(

(𝑛 + 1)�̃�(𝑖𝑛)
𝑛 + �̃�(𝑖𝑛)

𝑛+1
)

𝑛

[

1
2
P(𝑖𝑛)
𝑛 + 𝑛(cos 𝜃)

]

.

(46)

ere, 𝑛(𝜉) is the Legendre function of the first kind of order 𝑛,
�̃�(𝑖𝑛)
𝑛 , �̃�(𝑖𝑛)

𝑛+1} are the Fourier coefficients given in Appendix D.2, and P(𝑖𝑛)
𝑛

s the 0th moment of 𝑛 about the origin that is defined in Eq. (D.5).
ndeed, �̂�𝑑 ∼ (1) close to the shell, as required for our asymptotic
nalysis.4

.1. Numerical results

We recall that for the intermediate configuration, Eq. (19) provides
he relation between �̂�𝑠 and 𝜆0, for any constitutive law of the form
10). Here, by way of example, we present in Fig. 4(a) the pressure–
tretch curve of the Mooney–Rivlin shell, for the set of parameters that
s given in Table 1. This typical curve of the model is a non-monotonic
unction of the stretch (Beatty, 1987; Ogden, 1972). Here, we focus on
he state 𝜆0 = 1.2, marked in Fig. 4(a) by the red dot. The corresponding
irst-order pressure that evolves at the inner surface is presented in
ig. 4(b), as a function of 𝜃. Specifically, the solid black- and dashed
ed lines present the analytical solution [Eq. (46)] and a finite elements
olution using the commercial software COMSOL. In this finite element
imulation, the exact equations that describe the fully-coupled problem
ere solved, using COMSOL’s fluid–structure interaction module. In

his module, the Navier–Stokes equation governs the flow of entrapped
luid, while the solid was simulated using the solid Mechanics (not the
hell or membrane) interface with the Mooney–Rivlin material model.
he inlet highlights the variation of �̂�𝑑 over 0 < 𝜃 < 𝜃𝑓 (where 𝜃𝑓 ≈ 2.9
adians for our set of parameters and 𝑞 = 0.93). Note that the slope of
his variation becomes very sharp near 𝜃𝑓 , which corresponds to the
omain of the inner solution, where the boundary layer emerges.

4 For more details on the analytical solution, see Appendix D.4.
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D
i

n
a

Fig. 5. The relative (a) radial- and (b) tangential displacements, 𝑑𝑟 and 𝑑𝜃 , as functions of 𝜃, obtained by solving Eqs. (26)–(27) with Matlab’s numerical integration. (c) The radial
stretch of the body. Solid black and dotted green curves denote our Matlab solution and the analytical solution in the membrane limit to the approximation 𝜆(𝜃) ∼ 𝜆0+𝜖𝑠𝑑𝑟(𝜃)+(𝜖2𝑠 ).

ashed blue curve denotes the numerical solution obtained via COMSOL. The boundary layer thickness is 
(

𝜖1∕2𝑤
)

, in agreement with our analysis. (d) Illustration of the deformation
n the Cartesian plane, with the same legend as in panel (c). Contour lines of constant pressure are denoted by dotted gray lines, showing the high-pressure gradient at the entrance.
Fig. 6. (a) Tangential force- (solid black 𝑁𝜃𝜃 and dashed red 𝑁𝜙𝜙); (b) couples- (solid black 𝑀𝜃𝜃 and dashed red 𝑀𝜙𝜙); and (c) transverse shear resultant 𝑄𝜃𝜃 , normalized by the
extensional rigidity, bending rigidity over 𝑅𝑖, and bending rigidity over 𝑅2

𝑖 , respectively.
Fig. 5 presents the resultant deformations of the shell, owing the
on-uniform pressure. Specifically, panels (a) and (b) show the radial-
nd tangential displacements, 𝑑𝑟 and 𝑑𝜃 , as functions of 𝜃, whose solu-

tion was obtained by solving Eqs. (26)–(27) using Matlab’s numerical
integration.

Panel (c) presents the non-uniform stretch of the body. Here, the
solid black- and dotted green curves correspond to our analytical
solutions and its membrane limit [Eq. (34)], and the dashed blue curve
corresponds to the numerical solution obtained via COMSOL. Note
the excellent agreement between the numerical and analytical results,
except near the fixed ends of the shell, there we identify the boundary
layer by the sharp gradient of the stretch. The boundary layer thickness
is 

(

𝜖1∕2𝑤
)

, in agreement with our analysis in Section 4.2. The difference
between the results is due to the fact that near the tube (i) shear
stresses are no longer negligible; (ii) the drastic stress fluctuations are
inconsistent with our regular approximations [Eq. (8)].

Panel (d) presents a better visualization of the resultant shell, by
evaluating the deformation in the Cartesian plane [same legend as in
panel (c)]. We also present contour lines of constant pressure with
dotted gray lines. In the vicinity of the connection with the tube,
the contour lines are dense, indicating a high-pressure gradient; these
contour lines become more sparse away from the tube, and hence the
8

pressure field decays towards the upper part of the shell.
We proceed to analyze the kinetics of the system, and begin by
presenting in Fig. 6 the normalized force resultants [panel (a)], nor-
malized couples [panel (b)], and shear force resultant [panel (c)]. The
tangential force resultants are normalized by the extensional rigidity,
and the shear force resultants and couples are normalized by the
bending rigidity. The solid black line in panels (a) and (b) represent tan-
gential resultant/couples, and the dashed red line represents azimuthal
resultant/couples. The results agree with our assumption that the role
of the shear force and couples are negligible relative to the tensile force
outside the boundary layer.

Finally, we analyze in Fig. 7 the dependency of the flow rate and the
finite stretch on the first-order stretch. The former is shown in panel (a),
where the solid blue, dashed red, dotted green, and dash-dotted purple
curves, correspond to 𝑞 = 4.66, 2.33,−2.33 and −4.66, respectively. We
observe that the first-order deformation is larger at higher flow rates.
Counterintuitively, we further observe that the deflation (inflation) of
the shell tends to extend (contract) it in the vertical direction, and
contract (extend) it in the horizontal direction.

The dependency of the first-order stretch on 𝜆0 is shown in panel
(b). Specifically, the thick solid orange, dashed azure, dashed–dotted
maroon, and thin dotted yellow curves correspond to 𝜆0 = 1.1, 1.5, 1.7
and 2, respectively. We observe that at larger finite stretches, the first-

order deformations became larger too, a trend that is independent of
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Fig. 7. (a) First order stretch (𝜆 − 𝜆0) as a function of 𝜃 for 𝑞 = 4.66, 2.33,−2.33 and −4.66, denoted by solid blue, dashed red, dotted green, and dash-dotted purple curves,
respectively, when 𝜆0 = 1.2. (b) First order stretch on as a function of 𝜃 for 𝜆0 = 1.1, 1.5, 1.7 and 2, denoted by the thickest solid orange, dashed azure, dashed–dotted maroon, and
hin dotted yellow curves, respectively, when 𝑞 = 0.93.
M
t
[
g

he flow rate, as we verified using additional calculations (not shown
ere, for brevity).

. Summary and concluding remarks

Elastic shells are used in various devices such as pumps, actuators,
oft robots, and catheters. Their actuation mechanism is often based
n the injection or ejection of fluid to- and from the volume they
ncapsulate. Such processes lead to non-spherical deformations of the
hell, whose modeling is an intricate task, owing to its nonlinear
echanics.

In this work, we developed a framework for modeling these de-
ormations by combining elements from both nonlinear continuum
echanics and structural mechanics. We began by modeling the non-

pherical deformation as a superposition of incremental displacements
elative to a large spherical deformation. Our motivation for this de-
omposition stems from the nature of the transient traction that the
luid exerts in the process, namely, that its deviation from spherical
niformity is of order of magnitude smaller than its total magnitude.
y doing so, we were able to employ classical nonlinear solutions for
he spherical deformation, and utilize the theory of small-on-large, in
rder to obtain the equations that govern the incremental deformation.
his linearization about the finite deformation shows that the structural
igidity of the shell is higher at larger stretch ratios.

In the last stage of our modeling, we developed governing equations
n a manner similar to Kirchhoff–Love shell theory. We found that
he solution to the resultant balance equations has a boundary layer
tructure. We identified the leading-order terms of these equations
ith tensile rigidity and the first-order terms with bending rigidity. We
erived an analytical solution to the leading-order part of the equations,
hich is the dominant part away from the fixed ends of the shell. We
etermined this characteristic distance from the ends using the method
f dominant balance of order of magnitude.

We employed our framework to analyze the non-spherical deforma-
ion of the fluid-filled shell that was considered by Ben-Haim et al.
2022). For this parametric example, we derived numerical solutions
o our asymptotic equation using Matlab, and carried out fully-coupled
inite element simulations using COMSOL Multiphysics. We found that
hese solutions are in excellent agreement with our analytical solution
9

in the membrane limit, i.e., when the distance from the fixed ends is
greater than the characteristic distance that we found. Our numerical
study showed that the deviation from the spherical state is larger when
the volume of the incoming flow is larger. Our study further showed
that the deflation (inflation) of the membrane tends to extend (contract)
it in the vertical direction, and contract (extend) it in the horizontal
direction, contrary with a naive intuition. Collectively, the framework
developed here and the observations that were made based on its
numerical application, promote the understanding of the mechanics of
such fluid-filled finitely deformed shells and membranes.
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Appendix A. The second derivative of the strain energy function
and general form of the fourth-order elasticity tensor in terms of
the two principal invariants

Owing to relation (10), the first derivative of �̂� with respect to 𝐂 is

𝜕�̂�
𝜕𝐂

= d�̂�
d𝐼1

𝐈 +
(

𝐼1𝐈 − 𝐂
) d�̂�
d𝐼2

. (A.1)

oreover, the second derivative, 𝜕2�̂�∕𝜕𝐂2, is a fourth-order elasticity
ensor. The most general form of the fourth-order elasticity tensor
mentioned in Eq. (9b)] in terms of the two principal invariants is
iven by Holzapfel (2000)

𝜕2�̂�
= 𝛽 𝐈⊗ 𝐈 + 𝛽 (𝐈⊗ 𝐂 + 𝐂⊗ 𝐈) + 𝛽 𝐂⊗ 𝐂 + 𝛽 I, (A.2)
𝜕𝐂2 1 2 3 4
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where (I)𝑖𝑗𝑘𝓁 = 𝛿𝑖𝑘𝛿𝑗𝓁 denotes the fourth-order identity tensor, 𝛿𝑖𝑗 is the
regular Kronecker delta, and the coefficients 𝛽1,2,3,4 are defined by

𝛽1 =
𝜕2�̂�
𝜕𝐼21

+ 2𝐼1
𝜕2�̂�
𝜕𝐼1𝜕𝐼2

+
𝜕�̂�
𝜕𝐼2

+ 𝐼21
𝜕2�̂�
𝜕𝐼22

, 𝛽2 = −
𝜕2�̂�
𝜕𝐼1𝜕𝐼2

− 𝐼1
𝜕2�̂�
𝜕𝐼22

,

𝛽3 =
𝜕2�̂�
𝜕𝐼22

and 𝛽4 = −
𝜕�̂�
𝜕𝐼2

. (A.3)

Since the deformation gradient is a symmetric tensor in the leading
spherical case, 𝐅0 = 𝐅𝑇0 , it allows us to rewrite the last term of (9b) as
follows

2𝐅0
𝜕2�̂�
𝜕𝐂2

|

|

|

|𝐂0

𝐂1𝐅𝑇0 = 4
(

d2�̂�
d𝐼21

+
d�̂�
d𝐼2

)

tr
(

𝐅0𝐞𝐅2
0
)

𝐅0 − 4
d�̂�
d𝐼2

𝐅2
0𝐞𝐅

2
0, (A.4)

where the tracing map is used for obtaining the later relation, as follows

(𝐈⊗ 𝐈)𝐀 = (𝐞𝐢 ⊗ 𝐞𝐢 ⊗ 𝐞𝐣 ⊗ 𝐞𝐣)𝐴𝑠𝑡(𝐞𝐬 ⊗ 𝐞𝐭 ) = 𝐴𝑠𝑡𝛿𝑗𝑠𝛿𝑗𝑡(𝐞𝐢 ⊗ 𝐞𝐢)

= 𝐴𝑗𝑗 (𝐞𝐢 ⊗ 𝐞𝐢) = (tr𝐀)𝐈, (A.5)

for some general second-order tensor 𝐀 and right-handed and orthog-
onal basis {𝐞𝐢}.

Appendix B. Some explicit expressions

The explicit expressions for the effective Young modulus �̃�(𝜆0), and
Poisson ratio �̃�(𝜆0), are

�̃�(𝜆0)

=
4
(

𝜆40�̂�1 + �̂�2
)

[

2
(

𝜆30 − 1
)2(𝜆60 + 𝜆

3
0 + 1

)

�̂�11 + 𝜆40
(

1 + 𝜆60
)

�̂�1 + 𝜆30
(

2𝜆90 − 2𝜆60 + 5𝜆30 − 2
)

�̂�2
]

𝜆20
[(

𝜆30 − 1
)2(𝜆60 + 𝜆

3
0 + 1

)

�̂�11 + 𝜆40
(

1 + 𝜆60
)

�̂�1 + 𝜆30
(

𝜆90 − 𝜆
6
0 + 3𝜆30 − 1

)

𝛺2
]

,

(B.1a)

�̃�(𝜆0) =

(

𝜆30 − 1
)2(𝜆60 + 𝜆

3
0 + 1

)

�̂�11 + 𝜆40�̂�1 + 𝜆
3
0
(

𝜆90 − 2𝜆60 + 2𝜆30 − 1
)

�̂�2
(

𝜆30 − 1
)2(𝜆60 + 𝜆

3
0 + 1

)

�̂�11 + 𝜆40
(

1 + 𝜆60
)

�̂�1 + 𝜆30
(

𝜆90 − 𝜆
6
0 + 3𝜆30 − 1

)

�̂�2
, (B.1b)

here

�̂�𝑖𝑗 ≡
𝜕2�̂�
𝜕𝐼𝑖𝜕𝐼𝑗

|

|

|

|

(

𝐼 (0)1 ,𝐼 (0)2

)
; 𝑖, 𝑗 = 1, 2, (B.2)

nd �̂�𝑖 is defined in (14), (see Fig. 8).
The explicit stress resultants and couples, in terms of the non-

pherical displacements, are given by Naghdi and Kalnins (1962)

𝑁𝜃𝜃 = 
[

1
𝜂0

(

𝑑𝑟 +
d𝑑𝜃
d𝜃

)

+ 𝜈
𝜂0

(

𝑑𝑟 + 𝑑𝜃 cot 𝜃
)]

,

𝑁𝜙𝜙 = 
[

𝜈
𝜂0

(

𝑑𝑟 +
d𝑑𝜃
d𝜃

)

+ 1
𝜂0

(

𝑑𝑟 + 𝑑𝜃 cot 𝜃
)]

,

𝑀𝜃𝜃 = 
[

1
𝜂20

(

d𝑑𝜃
d𝜃

−
d2𝑑𝑟
d𝜃2

)

+ 𝜈
𝜂20

(

𝑑𝜃 −
d𝑑𝑟
d𝜃

)

cot 𝜃
]

,

𝜙𝜙 = 
[

𝜈
𝜂20

(

d𝑑𝜃
d𝜃

−
d2𝑑𝑟
d𝜃2

)

+ 1
𝜂20

(

𝑑𝜃 −
d𝑑𝑟
d𝜃

)

cot 𝜃
]

,

(B.3)

here  = 𝐸𝑤∕(1 − 𝜈2) is the extensional rigidity and  = 𝐸𝑤3∕12(1 −
2) is the bending rigidity. The expression of the shear stress resultant
𝜃𝜃 are (Beuthe, 2008)

𝜃𝜃 = −
𝜂30

d
d𝜃

(

d2𝑑𝑟
d𝜃2

+ cot 𝜃
d𝑑𝑟
d𝜃

+ 2𝑑𝑟

)

. (B.4)

Note that the expressions shown in relations (B.3) and (B.4) are in their
dimensional form.

Appendix C. Technical details for obtaining the equations gov-
erning the non-spherical axisemmetric displacements from the
balance equation

A compatibility equation can be calculated by eliminating 𝑑𝜃 from
he shell strains and replacing the strains with their stress equivalent
sing the first two equations in (23):

an 𝜃 d (

𝑁 − 𝜈𝑁
)

+
(

sec2 𝜃 + 𝜈
)

𝑁 +
(

1 − 𝜈 sec2 𝜃
)

𝑁

10

d𝜃 𝜙𝜙 𝜃𝜃 𝜙𝜙 𝜃𝜃
= 𝐸𝑤
𝜂0

(

d𝑑𝑟
d𝜃

+ 𝑑𝑟 tan 𝜃
)

tan 𝜃. (C.1)

Following Naghdi and Kalnins (1962) and Sammoura et al. (2014), we
define a new stress-function 𝐹 (𝜃), without direct physical interpreta-
ion, which serves to define the stress resultants without introducing
he tangential displacements. The stress-function satisfies the following
elations:

𝜃𝜃 = 𝐹 + cot 𝜃 d𝐹
d𝜃

+ 1
𝜂30

𝜃𝑑𝑟, 𝑁𝜙𝜙 = 𝐹 + d2𝐹
d𝜃2

+ 1
𝜂30

𝜃𝑑𝑟. (C.2)

where  = 𝐸𝑤3∕12(1 − 𝜈2) is the bending rigidity and 𝜃 is a linear
ifferential operator defined in (28). The tangential displacement 𝑑𝜃
an be related to the radial displacement 𝑑𝑟, by elimination of 𝑑𝜃 from
24b) as

𝜃 =
[

𝜂0
𝐸𝑤

(

𝑁𝜙𝜙 − 𝜈𝑁𝜃𝜃
)

− 𝑑𝑟

]

tan 𝜃. (C.3)

It is possible to obtain the following differential equation by combining
the shell strains with (24b), the shear stress resultant (B.4) and the
stress function defined in (C.2), to obtain
[

𝜃 − (1 + 𝜈)
]

𝐹 = 𝐸𝑤
𝜂0

𝑑𝑟 − (1 − 𝜈) 1
𝜂30

𝜃𝑑𝑟. (C.4)

This second differential equation can be reached by substituting the
resultant of the shear stress (B.4) into the radial momentum Eq. (24a)
along with the stress function (C.2),

𝜃𝐹 = 𝜂0(𝑝 − 𝑝𝑠) −
1
𝜂30

 2
𝜃 𝑑𝑟. (C.5)

ext, we will separate one equation that governs the radial displace-
ent. First, we subtract the Eqs. (C.4) from (C.5) and eliminate the

tress function depending only on the radial deformation as

1 + 𝜈)𝐹 = 𝜂0(𝑝 − 𝑝𝑠) −
𝐸𝑤
𝜂0

𝑑𝑟 +
1
𝜂30


[(

(1 − 𝜈) − 𝜃
)

𝜃
]

𝑑𝑟. (C.6)

Now, substitute (C.6) back into the Eq. (C.5) will lead to differential
equation that governs the radial deformation, as follow
[

 3
𝜃 − 2 2

𝜃 + 𝜂20
(

1 − 𝜈2
)

𝜃
]

𝑑𝑟 = 𝜂40
[

𝜃 − (1 + 𝜈)
]

(𝑝 − 𝑝𝑠), (C.7)

where  = 𝐸𝑤∕(1−𝜈2) is the extensional rigidity. In order to eliminate
the tangential displacement, 𝑑𝜃 , we start from the substitution of (C.2)
in (C.4)–(C.5) to obtain

𝑑𝜃 = −(1 + 𝜈)
𝜂0
𝐸𝑤

d𝐹
d𝜃
. (C.8)

Substitute (C.8) back into the relation (C.4), and use some algebraic
simplification manipulation will lead to the equation which governs the
tangential displacement as follow,
[

𝜃 − (1 + 𝜈)
]

𝑑𝜃 = −(1 + 𝜈)
d𝑑𝑟
d𝜃

+ 1
𝜂20




d
d𝜃

𝜃𝑑𝑟. (C.9)

The equation obtained in (C.9) displays that the tangential displace-
ment depends on the solution of the radial displacement, which must
first be determined. Also, the bending can be neglected in the leading
order as expected.

We consider examining again the linear relation obtained in Eq. (22)
and returning to dimensional variables using the relations (3a)-(3b).
From the order of magnitude, the effective Young’s modulus must be
normalized by 𝐸 = 𝜓∗�̃�(𝜆0) and also 𝜈 = �̃�(𝜆0).

Appendix D. Analytical investigation of the flow-field within an
expanding shell

The dynamics problem of a flow within an expanding shell was
studied by Ben-Haim et al. (2022). Their results suggest that the
pressure distribution can be used as an ‘‘external pressure’’ that causes
non-spherical axisymmetric deformations. Here, for completeness, we

recall the main results of that work.
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.1. Governing equations

In view of tube’s slenderness, we assume a constant pressure gradi-
nt. We consider negligible gravity, i.e., 𝜌𝑔𝑟0∕𝑝∗ ≪ 1 (where 𝑔 is the
ravitational acceleration), and assume that the Reynolds number is
mall. The fluid’s motion is governed by Stokes equations for creeping
low with an implicit time variable,

̂ ⋅ �̂� = 0, ∇̂�̂� = 𝜖𝜇∇̂2�̂�. (D.1)

.2. Flow field solution of hyperelastic spherical shell

Based on the assumption of spherical deformation, an analytical
eries solution is presented, describing the velocity field inside the
pherical body, namely,

�̂�𝑅 = 1
2

∞
∑

𝑛=2

[

(

(𝑛 + 2)𝜒−2
0 − 𝑛

)

𝛬𝑛−1 +
(

𝜒2
0 − 1

)

𝜑𝑛

]

𝜒𝑛0𝑛−1(cos 𝜃),

�̂�𝜃 =
1
2

∞
∑

𝑛=2

[

(

𝜒−2
0 − 1

)

𝑛(𝑛 + 2)𝛬𝑛−1 +
(

𝑛(1 − 𝜒−2
0 ) + 2

)

𝜑𝑛

]

𝜒𝑛0
𝑛(cos 𝜃)
sin 𝜃

,

(D.2)

where �̂�𝑅 and �̂�𝜃 are the radial and tangential velocity components,
respectively, 𝜒0(�̂�; 𝑇 ) = �̂�∕𝜆0(𝑇 ), and 𝑛(𝜉) are the Gegenbauer functions
of the first kind of order 𝑛 (and degree −1∕2). The relation with the
corresponding Legendre functions of the first kind 𝑛(𝜉) as,

𝑛(𝜉) =
𝑛−2(𝜉) − 𝑛(𝜉)

2𝑛 − 1
= − 1

(𝑛 − 1)!

(

d
d𝜉

)𝑛−2( 𝜉2 − 1
2

)𝑛−1
; 𝑛 ⩾ 2.

(D.3)

n the degenerate cases 𝑛 = 0, 1 we define 0(𝜉) = 1 and 1(𝜉) = −𝜉,
espectively. In addition, the constants 𝛬𝑛(𝑇 ) and 𝜑𝑛(𝑇 ) represent the
eneral Fourier coefficients of the boundary conditions which defined
y Eqs.(4.25)–(4.26) in Ben-Haim et al. (2022).

.3. Pressure distribution

The pressure distribution of the fluid is,

�̂�(𝐼)(�̂�, 𝜃; 𝑇 ) =
1
2
𝑑�̂�
11

𝜆0 𝑑𝜆0
−
𝜖𝜇
𝜆0

∞
∑

𝑛=1

(2𝑛 + 3)
(

(𝑛 + 1)𝛬𝑛 + 𝜑𝑛+1
)

𝑛

[

1
2
P(𝑖𝑛)
𝑛 + 𝜒𝑛0𝑛(cos 𝜃)

]

,

(D.4)

where P(⋅)
𝑛 is the zero𝑡ℎ moment of 𝑛(𝜉) about an origin, defined as

P(𝑖𝑛)
𝑛 ≡ ∫

−
√

1−𝜖2

−1
𝑛(𝜉)d𝜉 =

𝑛+1
(

−
√

1 − 𝜖2
)

− 𝑛−1
(

−
√

1 − 𝜖2
)

2𝑛 + 1
. (D.5)

D.4. Asymptotic justification for using the analytical solution of the pressure
distribution obtained in Ben-Haim et al. (2022)

We assume that the pressure distribution inside the body can be
described asymptotically as follows:

�̂� = �̂�𝑠 + 𝜖𝑠�̂�𝑑 + (𝜖2𝑠 ) at �̂� → 𝜆, (D.6)

where �̂�𝑠 is a large uniform part, and 𝜖𝑠�̂�𝑑 is a small order non-uniform
perturbation. Therefore, the real shape of the shell consists of an ideal
sphere with a small perturbation. According to the numerical results,
the perturbation of the shell’s stretch is also (𝜖𝑠), so we assume an
asymptotic approximation in the following manner:

𝜆(𝜃; 𝑇 ) = 𝜆0(𝑇 ) + 𝜖𝑠𝜆1(𝜃; 𝑇 ) + (𝜖2𝑠 ). (D.7)

We use a regular asymptotic approximation by setting the radial pertur-
bation (D.7) in the general solution of the pressure distribution (D.6),
followed by the Taylor expansion, which is approximated as follows:

�̂�
(

�̂� = 𝜆(𝜃; 𝑇 )
)

∼ �̂�𝑠
(

𝜆0(𝑇 )
)

+ 𝜖𝑠�̂�𝑑
(

𝜆0(𝑇 ), 𝜃
)

+ (𝜖2𝑠 ), (D.8)

which has the same loading structure as we assumed in Eq. (4). More-
over, the (𝜖𝑠) term in the body’s shape produces the (𝜖2𝑠 ) pressure
orrection. In light of these distinctions, we assume a spherical shell
nd utilize the non-uniform pressure distribution obtained. Then, by
he elastic analysis presented in this work, we determine what non-
pherical elastic deformations were added to the spherical shape as a
esult of the small pressures created during the dynamic procedure.
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