


J. Mech. Phys. Solids 186 (2024) 105590

A
0

T
l
A
F

A

K
E
N
C
w
B
F
M

1

e
a
w
2
e
A

a
2
e

n
f

e
(
E

h
R

Contents lists available at ScienceDirect

Journal of the Mechanics and Physics of Solids

journal homepage: www.elsevier.com/locate/jmps

hird-order exceptional points and frozen modes in planar elastic
aminates
riel Fishman, Guy Elbaz, T. Venkatesh Varma, Gal Shmuel ∗

aculty of Mechanical Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel

R T I C L E I N F O

eywords:
xceptional points
on-Hermitian physics
omposites
ave propagation
loch Floquet waves
rozen modes
etamaterials

A B S T R A C T

Exceptional points (EPs) are degeneracies of two or more natural modes of open systems, which
lead to unusual wave phenomena. Despite the robustness against imperfections of spatial EPs,
they are less studied relative to temporal EPs, particularly in elastodynamics. However, elastic
waves exhibit features not found in sound and light, which have proven useful for forming
spatial EPs. Here, we harness these features to tune the coalescence of three eigenmodes in
the Bloch spectrum of planar elastic laminates. We show that these third-order EPs give rise
to axially frozen modes: anomalous transmitted waves with zero axial group velocity and finite
transmittance. These modes, which were first reported in optics and required three-dimensional
laminates, are achieved here in a planar setting thanks to elastodynamics tensorial structure,
and expand the toolbox for elastic wave shaping.

. Introduction

Open systems, which are described by non-Hermitian operators, admit degenerate states at which two or more of their
igenmodes coalesce (Moiseyev, 2011; Kato, 1966; Ashida et al., 2020; El-Ganainy et al., 2019; Srikantha Phani, 2022; Bigoni
nd Kirillov, 2019). These degeneracies, termed exceptional points (EPs) (Miri and Alù, 2019; Midya et al., 2018), present exotic
ave phenomena, such as anisotropic transmission (Lin et al., 2011; Longhi, 2011; Elbaz et al., 2022), hypersensitivity (Wiersig,
014; Djorwe et al., 2019; Shmuel and Moiseyev, 2020; Kononchuk et al., 2022), and enrich coherent perfect absorption (Sweeney
t al., 2019; Wang et al., 2021; Goldstein and Shmuel, 2023), thus serve as tool for metamaterial design (Achilleos et al., 2017;
ssouar et al., 2018; Katsantonis et al., 2020; Fang et al., 2021; Wang and Amirkhizi, 2022; Gupta et al., 2023).

Most works are on temporal EPs which form when two (or more) resonance frequencies coalesce. These works incorporate gain
nd loss that are often balanced to form parity-time symmetry for temporal stability (Longhi, 2017; Rosa et al., 2021; Fang et al.,
022; Özdemir et al., 2019; El-Ganainy et al., 2018; Feng et al., 2017; Fleury et al., 2014, 2015; Christensen et al., 2016; Merkel
t al., 2018; Shi et al., 2016; Domínguez-Rocha et al., 2020).

Spatial EPs forming in the complex wavevector space at real frequencies have received less attention, particularly in elastody-
amics (Mokhtari et al., 2019), despite their robustness against imperfections (Tuxbury et al., 2022). However, elastic waves exhibit
eatures not found in sound and light waves (Chaplain et al., 2020), which can be harnessed to design spatial EPs.

To appreciate this, consider the ubiquitous scenario of isotropic media, in which case acoustic waves are longitudinal,
lectromagnetic waves are transverse, while only elastic waves exhibit both polarizations (Psiachos and Sigalas, 2019). Lustig et al.
2019) recognized that this distinctive coexistence of polarizations in elastodynamics offers a simpler alternative to design spatial
Ps and access some of their unique phenomena, instead of judicially designing gain and loss. By revisiting the classical problem
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of in-plane waves in two alternating elastic isotropic materials, they showed that the energy transfer between the polarizations
at material interfaces can be tuned to cause the coalescence of the laminate’s two Bloch modes (EP2). They further showed that
these spatial EPs give rise to anomalous energy transport in the canonical scattering problem, particularly negative refraction. We
reemphasize that these EPs form in the Bloch spectrum, and thus the work of Lustig et al. (2019) belongs to the emerging field of
physics of non-resonant EPs (Sweeney et al., 2019; Tuxbury et al., 2021), distinct from mainstream research on resonant EPs.

Here, we analytically establish the coalescence of three natural modes (EP3) in the Bloch spectrum of periodic elastic laminates
omposed of two anisotropic materials, and investigate the implications of these higher-order degeneracies. Although wave
ropagation in periodic anisotropic elastic layers is a classical problem (Braga and Herrmann, 1992; Nayfeh, 1991) that is still
eing studied (Guo et al., 2023), this is the first observation of EP3 in their spectrum.

Our analytical analysis is motivated by the pioneering work of Figotin and Vitebskiy (2003), who derived the conditions for
P3 in the Bloch spectrum of dielectric laminates. They further showed that these EPs may cause obliquely incident light to refract
hrough the laminate with nearly unity transmittance and large amplitude, while having vanishing group velocity in the lamination
irection. Owing to the latter property, Figotin and Vitebskiy (2003) termed these modes axially frozen modes; their discovery paved
he way for a series of works on electromagnetic frozen modes and their applications (Nada et al., 2021; Tuxbury et al., 2022;
paydin et al., 2012; Zamir-Abramovich et al., 2023; Tuxbury et al., 2021; Gan et al., 2019).

In the sequel, we derive the necessary conditions for non-resonant EP3 in the Bloch spectrum of planar elastic laminates, using
simpler approach than the one taken by Figotin and Vitebskiy (2003). Importantly, we show that it is possible to design EP3 and

xcite frozen modes in planar elastic laminates, in contrast with dielectric laminates, where a three-dimensional setting is necessary
see section II.B in the paper of Figotin and Vitebskiy, 2003). This fundamental and useful difference results from the tensorial
ichness in elastodynamics, relative to electrodynamics. Quantitatively, the former is governed by a fourth-order (elasticity) tensor
ield, while the latter is by a second-order (permittivity) tensor field. It is this tensorial difference that enables the additional wave
olarizations and couplings mentioned earlier.

To demonstrate that EP3 indeed forms in our setting, we select exemplary anisotropic materials according to our derived
onditions; and use them as the constituents of a designated laminate. To illustrate the implications of this degeneracy on elastic
cattering, we revisit the exact solution of the canonical transmission problem of monochromatic plane waves incident on a semi-
nfinite laminate (Joseph and Craster, 2015), and analyze the resultant scattering. Using our design parameters, we exemplify how
he transmittance near EP3 is finite, in spite of the fact that the group velocity of the transmitted Bloch wave vanishes, thereby giving
ise to elastic axially frozen modes. This can occur only if the energy density diverges at the same rate that the group velocity decays,
s our analysis confirms. We further demonstrate how the transmittance near the EP3 significantly depends on the properties of the
ncoming wave; and show that by shaping the incoming wave, it is possible to achieve unity transmittance at the EP3.

To support our analytical calculations, we carry out full-field finite elements simulations of the transmission problem using the
ommercial code COMSOL. We find that the transmittance extracted from the computational simulations agree with our analytical
alculations. Finally, we illustrate the hallmark of non-Hermitian degeneracy, namely, the tendency of the eigenmodes to coalesce
s the incoming wave frequency approaches the EP3 frequency.

Before we outline the structure of this paper, we note that our theoretical model is an idealization of what we expect from
ts experimental realization. As such, the frozen modes would be limited to some extent by the practical deviations from the
dealized settings, such as material defects, finiteness of the specimen, nonlinear effects (see recent efforts to analyze nonlinear
Ps by Suntharalingam et al., 2023 and Benzaouia et al., 2022), etc. Nevertheless, spatial EPs are robust against imperfections that
ause variation in the wavenumber (Tuxbury et al., 2022; Gan et al., 2019; Li et al., 2017), such as imperfections in the boundary
onditions or geometry.

Our analysis is presented as follows. Section 2 summarizes the equations that govern in-plane waves in periodic laminates,
ogether with the transfer matrix method to solve them. In Section 3, we first derive the algebraic conditions for the emergence
f EP3 in the Bloch spectrum of the laminate. Subsequently, we relate these conditions to the symmetries of the materials that
ompose the laminate. We show that it is sufficient to include one anisotropic material (subjected to certain conditions) in the unit
ell, in order for EP3 to form. We conclude Section 3 with some important properties of the energy flux in the laminate. Section 4
ontains our parametric examples of designated laminates with spectral EP3; analysis of the canonical transmission problem with
lastic frozen modes of unity transmittance; and computational simulations that support our analytical calculations. We finalize this
aper with a summary of our main results and conclusions.

. In-plane waves in periodic laminates

Solutions to the problem of in-plane waves in elastic laminates made of isotropic- (Brekhovskikh, 1960; Lowe, 1995; Adams et al.,
009) and anisotropic (Nayfeh, 1995) materials are well-known. For completeness and to introduce our notation, these solutions
re summarized next using Stroh’s formulation (Stroh, 1962; Braga and Herrmann, 1992).

We consider an infinite laminate made of two materials, denoted by 𝑎 and 𝑏, that are repeated periodically in the 𝑥1 direction.
e denote the thickness of material 𝑎 (𝑏) by ℎ(𝑎) (ℎ(𝑏)), such that the thickness of the unit cell is ℎ = ℎ(𝑎) + ℎ(𝑏) (Fig. 1(a)). The

aminate undergoes time-harmonic motion in the
(

𝑥1, 𝑥2
)

plane in the form of 𝒖 = 𝒖̂
(

𝑥1
)

𝑒𝑖(𝑘2𝑥2−𝜔𝑡), where 𝒖 is the displacement
ield, 𝑘2 is the transverse wavenumber and 𝜔 is the angular frequency; here and henceforth, overhead hat denotes functions of 𝑥1.

̂
( )
2

he objective is to determine the form of 𝒖 𝑥1 at prescribed values of 𝜔 (say, owing to a time-harmonic source) and 𝑘2 (when the
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Fig. 1. (a) Portion of an infinite laminate made of materials 𝑎 and 𝑏, repeated periodically in the 𝑥1 direction. The unit cell thickness is ℎ. (b) Semi-infinite
laminate connected at 𝑥1 = 0 to a homogeneous half-space, from which an incoming wave with an amplitude 𝐼 propagates in an angle 𝜃𝑖 towards the interface.
The incident, transmitted and reflected pressure and shear waves are denoted by 𝐼, 𝑇 , 𝑅𝐿 and 𝑅𝑆 , respectively. The upper (lower) 3D (2D) coordinate system
depicts a wavevector that propagates with (without) horizontal angle 𝜑 and vertical angle 𝜃.

incident wave encounters a plane whose normal is 𝑥1, as in the canonical scattering problem). To this end, we solve the equation
of linear momentum

∇ ⋅ 𝝈 = 𝜌𝒖̈, (1)

where 𝜌 is the mass density, and the stress 𝝈 is related to 𝒖 through the constitutive equation

𝝈 = 𝐂 ∶
(

∇𝒖 + ∇𝒖T
)

∕2, (2)

where 𝐂 is the elasticity tensor, which may be anisotropic. Owing to the periodicity of the laminate, 𝜌 and 𝐂 are ℎ-periodic in 𝑥1.
After some manipulation (see Appendix A), Eq. (1) can be written as

𝜕
𝜕𝑥1

𝗌
(

𝑥1
)

= 𝖠
(

𝑥1
)

𝗌
(

𝑥1
)

, (3)

where

𝗌
(

𝑥1
)

=
(

𝑢̂1 𝑢̂2 𝜎̂11 𝜎̂21
)𝖳 , (4)

and the propagator matrix 𝖠 (whose components are given in Appendix A) is a function of 𝑘2, 𝜔 and the mechanical properties
of each layer. In the sequel, we will link the material symmetries to the properties of 𝖠 and, in turn, the formation of EP3. The
so-called state vector 𝗌 comprises quantities that are continuous throughout the medium, and in particular at interfaces between the
layers. Using these continuity conditions and the fact that 𝖠 is piecewise-constant, we can integrate Eq. (3) over a representative
unit cell, and relate the state vector at 𝑥1 = 0 and 𝑥1 = ℎ via

𝗌 (ℎ) = 𝖳𝗌 (0) , (5)

where the transfer matrix 𝖳 is

𝖳 ∶= 𝖳(𝑏)𝖳(𝑎) = 𝑒𝖠
(𝑏)ℎ(𝑏)𝑒𝖠

(𝑎)ℎ(𝑎) , (6)

and 𝖠(𝑛) is the value of 𝖠 at layer 𝑛. The values of the state vector at the two ends of the periodic cell are also related via the
Bloch–Floquet theorem

𝗌
(

𝑥1
)

= 𝗌p(𝑥1)𝑒𝑖𝜅𝑥1 , 𝗌p(𝑥1 + ℎ) = 𝗌p(𝑥1), (7)

where 𝜅 is the Bloch wavenumber, hence

𝗌 (ℎ) = 𝑒𝑖𝜅ℎ𝗌 (0) . (8)

Eqs. (5)–(8) together constitute the eigenvalue problem

[𝖳 − 𝛬𝖨] 𝗌 (0) = 𝟢 (9)

for the (exponent of the) Bloch wavenumbers 𝛬 ∶= 𝑒𝑖𝜅ℎ and eigenmodes. Eq. (9) dictates the dispersion relation 𝜔 (𝜅) between the
frequency 𝜔 and the Bloch wavenumber 𝜅. We recall that owing to the periodicity of the medium, if 𝜅 is a solution, then so is
𝜅ℎ + 2𝜋𝑚 for any integer 𝑚; therefore, one can extract the dispersion curves at any 𝜅 from the curves in the first Brillouin zone
−𝜋∕ℎ ≤ 𝜅 ≤ 𝜋∕ℎ. In certain cases, the spectrum exhibits axial symmetry by virtue of the properties of the constituents, and then it
is sufficient to evaluate the spectrum for 0 ≤ 𝜅 ≤ 𝜋∕ℎ (Lee and Yang, 1973; Guo et al., 2023); we will analyze the conditions under
which this symmetry breaks down.
3
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3. Relevant properties of the Bloch spectrum

3.1. Characteristic polynomial and triple roots

Eq. (9) delivers the quartic characteristic polynomial

𝑝 (𝛬) = 𝛬4 − 𝐼1𝛬
3 + 𝐼2𝛬

2 − 𝐼3𝛬 + 𝐼4 = 0, (10)

here {𝐼𝑘} are the invariants of the transfer matrix, given by

𝐼1 = tr (𝖳) , 𝐼2 =
1
2
[

tr (𝖳)2 − tr
(

𝖳2)] , 𝐼3 =
1
6
[

tr (𝖳)3 − 3tr
(

𝖳2) tr (𝖳) + 2tr
(

𝖳3)] , 𝐼4 = det(𝖳). (11)

he characteristic polynomial can be factored into a product of the form

𝑝 (𝛬) =
(

𝛬 − 𝛬1
) (

𝛬 − 𝛬2
) (

𝛬 − 𝛬3
) (

𝛬 − 𝛬4
)

. (12)

ear EP3, there exists an eigenvalue whose algebraic multiplicity is 3, the dispersion relation can be approximated as

𝜔 − 𝜔EP3 ∼
(

𝜅 − 𝜅EP3
)3 , (13)

here
(

𝜔EP3, 𝜅EP3
)

are the frequency–wavenumber pair forming EP3. Accordingly, EP3 is also a stationary inflection point, at which

𝜕𝜔
𝜕𝜅

= 0, 𝜕2𝜔
𝜕𝜅2

= 0, 𝜕3𝜔
𝜕𝜅3

≠ 0, (14)

where the rest of the parameters of the problem are taken as fixed when evaluating the partial derivatives, including 𝑘2. Eq. (13)
explains the robustness against small variations in 𝜅 near EP3; conversely, the inverse equation states that small variations from
𝜅EP3 are proportional to (𝜔 − 𝜔EP3)1∕3, which explains the high sensitivity to perturbations in the frequency.

From the general formula for the roots of quartic equations, the necessary algebraic conditions on the invariants of the quartic
characteristic polynomial to have at least a triple root are

𝛥0 =𝐼22 − 3𝐼1𝐼3 + 12𝐼4 = 0, (15)

𝛥1 =2𝐼32 − 9𝐼1𝐼2𝐼3 + 27𝐼21 𝐼4 + 27𝐼23 − 72𝐼2𝐼4 = 0. (16)

Note that conditions (15)–(16) are applicable for characteristic polynomials with imaginary coefficients. These equations cannot be
satisfied by any laminate, as we explain next.

3.2. Relations with material symmetries

The symmetries of the materials that comprise the periodic cell determine the coefficients of the characteristic polynomial, and,
in turn, the possible degeneracies of the spectrum. When all the layers are made of isotropic materials and 𝑘2 ∈ R (i.e., the wave does
not decay in the 𝑥2 direction, as in the canonical scattering problem), the coefficients are real and satisfy the so-called reversibility
property (Romeo and Luongo, 2002; Lustig et al., 2019; Mokhtari et al., 2020)

𝐼1 = 𝐼3, 𝐼4 = det𝖳 = 1. (17)

To see that det𝖳 is 1, we note that tr𝖠 = 0 for isotropic layers [in this case 𝛼2 is zero in Eq. (A.5)], and hence

det𝖳 = det
(

𝑒𝖠
(𝑏)ℎ(𝑏)𝑒𝖠

(𝑎)ℎ(𝑎)
)

= 𝑒tr𝖠(𝑏)ℎ(𝑏)𝑒tr𝖠(𝑎)ℎ(𝑎) = 𝑒0𝑒0 = 1. (18)

The reversibility property constrains the eigenvalues to appear in two reciprocal pairs1, such that if 𝛬1 and 𝛬2 are roots of 𝑝 (𝛬),
then so are 𝛬−1

1 and 𝛬−2
2 . Since 𝛬 = 𝑒𝑖𝜅ℎ, this reciprocity implies that if 𝜅̃ is a solution, then so is −𝜅̃. Hence, the Bloch spectrum has

axial spectral symmetry about 𝜅 = 0, i.e., 𝜔 (𝜅) = 𝜔 (−𝜅), a symmetry that prohibits triple roots; this symmetry must be broken in
order to obtain EP3. We note that Figotin and Vitebskiy (2003) provided a different proof of this necessary condition for the Bloch
spectrum of layered dielectric media. Figotin and Vitebskiy (2003) further deduced that the Bloch diagram of wavevectors with only
two components cannot form EP3 (see sections II.B and III.E therein). In the sequel, we show that the conclusion in elastodynamics
is different: elastic waves in the

(

𝑥1, 𝑥2
)

plane may exhibit EP3. This difference is a manifestation of the coupling between the
different in-plane elastic polarizations, which are absent in electrodynamics. This is evident in equation (83) in the paper of Figotin
and Vitebskiy (2003), reflecting how the Bloch TE and TM modes decouple.

To this end, it is sufficient to include one layer that is made of anisotropic solid whose 𝛼1 and 𝛼2 coefficients are nonzero. In
such case, the trace of its propagator matrix 𝖠 is no longer zero, and hence the determinant of its transfer matrix—and the whole
cell—is no longer 1. Specifically, det𝖳 = 𝑒tr𝖠(𝑎)ℎ(𝑎) = 𝑒−2𝑖ℎ

(𝑎)𝑘2𝛼
(𝑎)
2 ∕𝛼(𝑎)1 , assuming material 𝑎 is anisotropic. This breaks the reversibility

property, and in turn the axial spectral symmetry, since 𝐼4 and the coefficient of 𝛬4 in Eq. (10) are no longer equal one to another.
To the best of our knowledge, this is the first analysis for the condition of axial asymmetry in the Bloch spectrum of elastic laminates.

We conclude this part highlighting that the breakdown of axial symmetry does not violate the principle of reciprocity, which
requires the frequency to be an even function of the wavevector, not the wavenumber, i.e., 𝜔

(

𝜅, 𝑘2
)

= 𝜔
(

−𝜅,−𝑘2
)

, not 𝜔
(

𝜅, 𝑘2
)

=
𝜔
(

−𝜅, 𝑘2
)

.

1 To see this, divide 𝑝 𝛬 by 𝛬4 and observe that the result is 𝑝
(

𝛬−1).
4

( )
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3.3. Consequences of reciprocity and energy conservation

When all the reciprocal constituents are conservative and 𝑘2 ∈ R, then 𝖳 is 𝖩-unitary [see the paper by Langley (1996) and the
references therein], i.e., it satisfies

𝖳†𝖩𝖳 = 𝖩, 𝖩 =
(

𝟢𝟤 𝖨𝟤
−𝖨𝟤 𝟢𝟤

)

, (19)

where † is the conjugate-transpose operator. Indeed,

𝖳†𝖩𝖳 = 𝑒𝖠
†ℎ𝖩𝖳 = 𝑒𝖩𝖠𝖩

−𝖳ℎ𝖩𝖳 = 𝖩𝖳−𝟣𝖩−𝟣𝖩𝖳 = 𝖩, (20)

where we have used fact that 𝖠 satisfies (𝖩𝖠)† = 𝖩𝖠, together with the identities 𝖩T = −𝖩 and 𝑒−𝖩𝖠𝖩−𝟣ℎ = 𝖩𝑒−𝖠ℎ𝖩−𝟣. Since 𝖳 is 𝖩-unitary,
both 𝛬 and 1∕𝛬∗ satisfy Eq. (10), and hence so are both 𝜅 and 𝜅∗. To show this, operate † on the eigenvalue problem of the inverse
transfer matrix 𝖳−1𝗌 = 𝛬−1𝗌 and multiply by 𝖩 to obtain

𝗌†𝖳−†𝖩 =
(

𝛬−1)∗ 𝗌†𝖩. (21)

Using the 𝖩-unitarity (19) and the identity 𝖩T = −𝖩 we obtain
(

𝖩𝗌∗
) T𝖳 =

(

𝛬−1)∗ (𝖩𝗌∗
) T, (22)

i.e.,
(

𝛬−1)∗ is also an eigenvalue of 𝖳, the eigenvector of which is (𝖩𝗌∗) T.

3.4. Energy flux

The concept of energy flux in periodic media made of anisotropic materials may be foreign. For the convenience of the reader,
we record some essential notions in Appendix B, and utilize their implications to our problem. We begin with the conclusion that
the spatio-temporal mean energy flux in the axial direction is (Willis, 2015)

⟨1⟩ ∶= −1
2

Re
⟨

𝜎1𝑗 𝑢̇
∗
𝑗

⟩

= 𝜕𝜔
𝜕𝜅

⟨𝐸⟩ , (23)

where angular brackets denote spatial mean over the unit cell, 1 is the time-average energy flow in the 𝑥1-direction, and

𝐸 = 1
4
𝜎𝑖𝑗𝑢

∗
𝑖,𝑗 +

1
4
𝜔2𝜌𝑢∗𝑘𝑢𝑘 ≡ 1

2
𝜔2𝜌𝑢∗𝑘𝑢𝑘 (24)

is the time-average total energy density. It follows that the mean axial energy flux vanishes when the axial group velocity, i.e., the
slope of the dispersion curve 𝜕𝜅𝜔 is zero, if ⟨𝐸⟩ is bounded. This is the case at EP2, there ⟨𝐸⟩ is finite and 𝜕𝜅𝜔 = 0. As we demonstrate
in the sequel, the total energy density abnormally diverges near EP3, at the same rate that 𝜕𝜅𝜔 tends to vanish. Specifically, Eq. (13)
implies that near EP3

𝜕𝜔
𝜕𝜅

∝
(

𝜅 − 𝜅EP3
)2 ∝

(

𝜔 − 𝜔EP3
)2∕3 , (25)

and hence the mean energy density scales as (𝜔 − 𝜔EP3)−2∕3, such that the energy flux is of order 1 (Figotin and Vitebskiy, 2006).
Some key properties of 1 are easy to demonstrate once it is recast in terms of 𝗌 as

1 = −1
4
𝜔𝗌∗T𝖩𝗌 =∶ [𝗌, 𝗌] . (26)

Note that for any arbitrary 𝗌(𝑚) and 𝗌(𝑛)

[

𝖳𝗌(𝑚),𝖳𝗌(𝑛)
]

=
[

𝗌(𝑚), 𝗌(𝑛)
]

, (27)

since 𝖳 is 𝖩-unitary. If 𝗌(𝑚) and 𝗌(𝑛) are eigenvectors of 𝖳 with eigenvalues 𝛬(𝑛) and 𝛬(𝑚), then together with Eq. (27), it follows that
[

𝖳𝗌(𝑚),𝖳𝗌(𝑛)
]

=
[

𝛬(𝑚)𝗌(𝑚), 𝛬(𝑛)𝗌(𝑛)
]

=
[

𝗌(𝑚), 𝗌(𝑛)
]

. (28)

Therefore, if 𝛬∗(𝑚)𝛬(𝑛) ≠ 1, i.e., if 𝜅∗(𝑚) ≠ 𝜅(𝑛), then
[

𝗌(𝑚), 𝗌(𝑛)
]

= 0. This implies the important conclusion that a single propagating
state vector with real 𝜅 carries energy in the axial direction, while a single evanescent state vector whose 𝜅 is complex or imaginary
annot carry energy along 𝑥1. However, if the total state vector is composed of a sum of evanescent state vectors with conjugate
avenumbers, then their interaction carries energy along 𝑥1. In semi-infinite laminates, such a scenario is excluded because one of

the evanescent waves diverges at infinity, making it non-physical, while decaying evanescent modes that do not transport energy
form to accommodate continuity conditions at interface problems (Srivastava and Willis, 2017). These observations allow us to
restrict the interpretation of 𝜕𝜅𝜔 to real 𝜅. In the sequel, we refer to modes with real 𝜅 as propagating modes.

Finally, we observe that 1 is independent of 𝑥1, and hence ⟨1⟩ = 1. The conservation of 1 along 𝑥1 results from the continuity
of 𝗌 in that direction. (See analogue proof for the antiplane shear problem by Srivastava and Willis, 2017, section 5c.)

We note that Eqs. (26)–(28) are essentially adaptation of the results that appear in section 5.5 of the paper by Figotin and
5

Vitebskiy (2006), to our formulation for elastic laminates.
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Table 1
Properties of two exemplary materials used as the constituents in Fig. 2.

Material 𝐶11
[

GPa
]

𝐶22
[

GPa
]

𝐶66
[

GPa
]

𝐶12
[

GPa
]

𝐶16
[

GPa
]

𝐶26
[

GPa
]

𝜌
[

Kg∕m3]

𝑎 276 276 78.8 118 50 0 7800
𝑏 7.28 7.28 1.21 4.86 0 0 1200

Fig. 2. Bloch spectrum of the exemplary laminate, whose constituents properties are given in Table 1, for 𝑘2ℎ = 0.15. Real (imaginary) part of each Bloch
wavenumber is shown in solid (dashed) curve. Red shading denotes frequency band gap, without any propagating modes. The axial spectral symmetry of the
diagram with respect to 𝜅 = 0 is broken.

4. Parametric spectra and implications on elastic wave scattering

This Section provides parametric examples of the our analytical analysis. First, it exemplifies that indeed the spectral axial
symmetry of periodic laminates may be broken using anisotropic materials. Then, it shows that our design rules tune such
spectra to exhibit EP3. Finally, it revisits the canonical interface problem between a homogeneous half-space and a semi-infinite
laminate (Joseph and Craster, 2015; Lustig et al., 2019), and demonstrates that our design parameters lead to axially frozen modes
in the laminate.

4.1. Bloch spectra

We begin by exemplifying the breakdown of axial symmetry by periodizing one isotropic material of thickness 3 mm and one
anisotropic material of thickness 1.3 mm, whose properties are given in Table 1.

Fig. 2 presents the Bloch spectrum of the resultant infinite laminate in terms of the ordinary frequency 𝑓 = 𝜔∕2𝜋, for 𝑘2ℎ = 0.15,
where the real (imaginary) part of each Bloch wavenumber is shown in solid (dashed) curve. In accordance with our arguments in
Section 3, the axial spectral symmetry of the diagram with respect to 𝜅 = 0 is broken. For example, at 𝑓 = 0 kHz, the red and green
branches are complex conjugates, whose values are 0.014 ± 0.9𝑖 (the imaginary part is outside the displayed region of 𝜅ℎ values),
while there are no branches with the values −0.014 ± 0.9𝑖 (the remaining two branches are ±0.065𝑖). There is EP2 at 𝑓 = 26.48 kHz,
where the imaginary part of these branches vanishes and their identical real part splits according to a square root law. At 𝑓 = 28 kHz,
the values of the green and red branches are 0.259 and −0.246, respectively, and the two remaining branches are 0.56 and −0.54
(again, outside the displayed region).

Having exemplified the broken axial symmetry by a laminate with anisotropic constituents, we proceed to tune the invariants via
rationally chosen material properties and frequency, in order to satisfy Eqs. (15)–(16) and form EP3. Formally, we aim to minimize
the objective function 𝜙 = |

|

𝛥0
|

|

+ |

|

𝛥1
|

|

over the design space. We choose 𝐶16 and 𝐶22 of material 𝑎 as the design parameters, since
𝐶16 changes all the invariants, while 𝐶22 changes all the invariants except 𝐼4.

By application of the above scheme to the base materials in Table 1, we find that 𝜙 vanishes for 𝐶16 = 61.25 GPa, 𝐶22 = 63.33GPa
and 𝑓 ≈ 4.15 kHz (the remaining parameters are fixed at the values of the previous example). The resultant Bloch spectrum is shown
6
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Fig. 3. Bloch spectrum of exemplary laminate, whose constituents properties satisfy the conditions for EP3, for 𝑘2ℎ = 0.15. Real (imaginary) part of each Bloch
wavenumber is shown in solid (dashed) curve. Red shading denotes frequency band gap, i.e., without any propagating modes. EP3 exists at 𝑓 ≈ 4.15 kHz, were
the red, blue and green branches coalesce.

in Fig. 3. Indeed, the red, blue and green branches coalesce at 𝑓EP3 ≈ 4.15 kHz to the value 0.048, (the value of the remaining black
branch is −0.11), and follow cubic behavior close to the EP3. This is the first report of EP3 in the Bloch spectrum of planar elastic
laminates.

4.2. The canonical scattering problem

We proceed to demonstrate the implications of the non-resonant Bloch EP3 on elastic wave propagation using a canonical
scattering problem of a plane wave incident on a semi-infinite laminate (Joseph and Craster, 2015; Lustig et al., 2019). Specifically,
we will show that the elastic transmittance of the laminate at EP3 is nonzero and can be even unity, in spite of the fact that the
group velocity vanishes there.

To fix ideas, we consider a truncation of the designated laminate at 𝑥1 = 0, there it is bonded to a homogeneous material
occupying the half-space 𝑥1 < 0. The question is to determine the reflected and transmitted waves from an incident wave propagating
at an angle 𝜃𝑖 and amplitude 𝐼 towards the interface (Fig. 1(b)). Standard analysis implies that the incident wave is partially reflected
as pressure and shear waves of amplitudes 𝑅𝐿 and 𝑅𝑆 , respectively, and partially transmitted as a combination of two forward Bloch
modes,2 each of which can either be propagating with positive group velocity, or decaying with Re 𝜅 > 0. The solution process selects
the proper transmitted modes from the Bloch spectrum, and determines the amplitude of each scattered mode from the continuity
conditions at the interface, which at the outset enforce that all waves share the same vertical wavenumber, 𝑘2. In terms of these
modes, the continuity conditions about 𝑥1 = 0 are

𝑇1𝗌𝟣
(

0+
)

+ 𝑇2𝗌𝟤
(

0+
)

= 𝐼𝗌𝐼 (0−) + 𝑅𝐿𝗌𝐿 (0−) + 𝑅𝑆𝗌𝑆 (0−) , (29)

where 𝑇1 and 𝑇2 are the amplitude of the two transmitted Bloch modes 𝗌𝟣 and 𝗌𝟤, and 𝗌𝐿 (𝗌𝑆 ) is the reflected pressure (shear) mode.
Eq. (29) constitutes four algebraic equations for the four amplitudes 𝑅𝐿, 𝑅𝑆 , 𝑇1 and 𝑇2. As a consistency check for our solution,
we verify that it respects energy conservation at the interface, such that the reflected and transmitted energy through the interface
equals the incoming energy. The energy conservation equation in the axial direction takes the form

1
|𝐼|2 𝐼

1

[

𝛴2
𝑖=1

|

|

𝑇𝑖||
2 𝑇𝑖

1 − |

|

𝑅𝐿
|

|

2 𝑅𝐿
1 − |

|

𝑅𝑆
|

|

2 𝑅𝑆
1

]

= 1, (30)

2 This construction holds almost always, i.e., except at discrete EP frequencies, there a more complicated construction is needed. We exploit the fact that we
can use this construction arbitrarily close to EPs, for simplicity.
7
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Fig. 4. Transmittance versus frequency of the laminate from Fig. 3, when incident (a) pressure; and (b) shear waves are incoming from half-space (32) at
𝑘2ℎ = 0.15. The dashed line denotes 𝑓EP3. The transmittance is finite at 𝑓EP3, even though there the group velocity vanishes. (c) Same as (b), only now shear
waves are incoming from half-space (33). Strikingly, the transmittance is unity at 𝑓EP3, there it forms a cusp.

Fig. 5. Finite element simulations corresponding to Fig. 4 using the commercial code COMSOL showing energy flux along 𝑥1 direction at EP3, when incident
(a) pressure; and (b) shear waves are incoming from half-space (32) at 𝑘2ℎ = 0.15. (c) Same as (b), only now shear waves are incoming from half-space (33).

where 𝑇𝑖
1 =

[

𝗌𝑇𝑖 , 𝗌𝑇𝑖
]

and so on. Note that the total transmitted energy flux is the sum of the energy flux of the two Bloch waves,
in light of the results in Section 3.4. Also note that Eq. (30) can also be deduced from the continuity conditions (29). The scheme
described above provides exact solution to the canonical scattering problem.

4.3. Transmittance near third-exceptional points

The transmittance of the semi-infinite laminate is defined by the ratio of the axial transmitted energy flux to the incident energy.
Accordingly, the transmittance in our case is

𝜏 =
𝛴2
𝑖=1

|

|

𝑇𝑖||
2 𝑇𝑖

1

|𝐼|2 𝐼
1

. (31)

Having at hand the exact solution to the scattering problem, we proceed to evaluate the transmittance using specific parameters in
the frequency range that contains the EP3.

In our first parametric demonstration, we consider a half-space whose mechanical properties were arbitrarily set to

𝜇(0) = 0.178GPa, 𝜆(0) = 0.714GPa, 𝜌(0) = 3000 kg/m3. (32)

The half-space guides waves at frequencies and angles whose resultant vertical wavenumber is 𝑘2ℎ = 𝑘 cos 𝜃𝑖 ℎ = 0.15,3 so that Fig. 3
can be used to determine the transmitted modes.

Fig. 4(a) shows the transmittance extracted from our exact solution as function of frequency for incident pressure waves; the
EP3 frequency is denoted by the dashed line. Indeed, the transmittance at the EP3 is nonzero, in spite of the fact that the respective
group velocity is zero. The particular transmittance value depends on the incident wave properties, and in particular its polarization.
This is evident in Fig. 4(b), which is the same as Fig. 4(a), only for incident shear waves. We observe that the transmittance peaks
near the EP3 to 𝜏 ≈ 0.71, which is significantly higher than the transmittance in Fig. 4(a).

It is possible to achieve unity transmittance by tailoring the incoming wave, or equivalently, the properties of the waveguide,
i.e., the homogeneous half-space. Indeed, by optimizing over 𝜆(0), 𝜇(0) and 𝜌(0) we find that the set

𝜇(0) = 1.11GPa, 𝜆(0) = 2.01GPa, 𝜌(0) = 2800 kg/m3, (33)

3 The pressure (shear) wave velocity in the half-space is 𝑐(0) =
√

(

2𝜇(0) + 𝜆(0)
)

∕𝜌(0) (𝑐(0) =
√

𝜇(0)∕𝜌(0)) and the wavenumber is 𝑘 = 𝜔∕𝑐(0) (𝑘 = 𝜔∕𝑐(0)).
8
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Fig. 6. Squared magnitude of the (a) total; (b) propagating; and (c) evanescent displacement fields at 𝑥1 = 0, as functions of frequency, when shear waves are
incoming from half-space (33) at 𝑘2ℎ = 0.15. The propagating- and evanescent displacement fields diverge when 𝑓 → 𝑓EP3 (denoted by a dashed line), while
𝒖 (0) = 𝒖pr (0) + 𝒖ev (0) remains finite, as it should to satisfy interface continuity conditions.

Fig. 7. Squared magnitude of the (a) total; (b) propagating; and (c) evanescent stress fields at 𝑥1 = 0, as functions of frequency, when shear waves are incoming
from half-space (33) at 𝑘2ℎ = 0.15. The propagating- and evanescent stress fields diverge when 𝑓 → 𝑓EP3 (denoted by a dashed line), while 𝝈 (0) = 𝝈pr (0) +𝝈ev (0)
remains finite, as it should to satisfy interface continuity conditions.

generates unity transmittance at the EP3. We demonstrate this in Fig. 4(c), which shows 𝜏 (𝑓 ) of shear waves incoming from the
optimized waveguide. Indeed, the transmittance reaches unity at the EP3, there it forms a cusp.

To support the results that are based on the exact solution, we also carry out full-field finite element simulations using the
commercial code COMSOL. In these simulations, we generate plane wave packets at 𝑓 = 4.15 kHz and different incident angles
using a line load in a homogeneous medium, and calculate the fields that are transmitted through the laminate (see Appendix C for
a detailed description of the computational model).

Fig. 5 shows exemplary time snapshots of the energy flux along 𝑥1, extracted from COMSOL’s models that simulate the cases
in Fig. 4. Fig. 5(a) corresponds to pressure waves incident from material (32) at an angle 𝜃𝑖 = 36.97◦. The simulation yielded a
transmittance of 0.086 and refraction angle 𝜃tr = 2.87◦ (tan 𝜃tr ∶=

⟨

𝑇
1
⟩

∕
⟨

𝑇
2
⟩

) where our analytical calculation yielded 𝜏 = 0.0735
and 𝜃tr = 2.42◦.

Fig. 5(b) corresponds to shear waves incident from material (32) at an angle 𝜃𝑖 = 70.98◦. The transmittance and refraction angle
from the simulation are 0.6 and 17.93◦, respectively, where the analytical predictions are 𝜏 = 0.71 and 15.25◦, respectively. Thus,
both the analytical calculation and computational simulation predict a substantial amount of transmitted energy near the EP3, when
the polarization of the incident wave is transverse. Lastly, Fig. 5(c) corresponds to shear waves that are incoming from the optimized
material (33) at angle 32.61◦. The transmittance in the simulation is 0.9, which is less than 10% error w.r.t. the analytical prediction
of 0.99. The refraction angle in the simulation is 7.85◦, less than one degree away from its analytical calculation of 6.87◦.

4.4. Mode coalescence, evanescent boundary layer and saturation

The purpose of this part is to elucidate the physical origins of the anomalous transmission, by analyzing its comprising modes.
At the outset, we recall that finite transmittance can concurrently occur with vanishing group velocity only if the energy density
diverges. To show that this is indeed the case, we evaluate the transmitted fields at frequencies in the vicinity of the EP3, recalling
that the total energy density is a quadratic function of the displacement field.

Specifically, Figs. 6(a), 6(b) and 6(c) show the squared magnitude of the total-, propagating- and evanescent displacement field,
respectively, versus the frequency, evaluated at the interface, when shear waves are incoming from half-space (33). The propagating
displacement field diverges when the frequency approaches the EP3 frequency, and hence so does its energy density. The evanescent
9
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Fig. 8. Projection of the two normalized forward state vectors onto the
(

𝑠1 , 𝑠2 , 𝑠4
)

-space, at (a) 𝑓 = 4.2 kHz; and (b) 4.155 kHz. Real (imaginary) part of 𝗌ev (𝗌pr)
is denoted in black (purple). The state vectors tend to align, as the frequency approaches 𝑓EP3.

displacement field diverges as well, while the total displacement field, which is the sum of 𝐮pr and 𝐮ev, remains finite as it should
to satisfy continuity conditions at the interface.

Fig. 7 mirrors Fig. 6 for the stress fields, which exhibit the same trends as the displacement fields. We note that all of the
displacement- and stress components, i.e., 𝑢1, 𝑢2, 𝜎21 and 𝜎22, diverge, although we do not present that, for brevity. These components
diverge in a way that the state vectors of the propagating- and evanescent modes become collinear as 𝑓 → 𝑓EP3. This tendency is the
hallmark of exceptional points of non-Hermitian systems, at which both the eigenvalues and the eigenvectors become degenerate.

To show this, we present in Fig. 8 the two forward state vectors at two frequencies, namely, at 𝑓 = 4.2 kHz (Fig. 8(a)) and
𝑓 = 4.155 kHz (Fig. 8(b)). Specifically, we normalize the vectors such that 𝑠3 = |1|, and depict their projection on the three-
dimensional space

(

𝑠1, 𝑠2, 𝑠4
)

, to facilitate visualization. The real (imaginary) part of 𝗌ev (𝗌pr) is denoted in black (purple). Indeed,
we observe how the state vectors tend to align as the frequency approaches 𝑓EP3.

Another manifestation of this alignment is illustrated in Fig. 9, which shows the distribution of the vertical displacement over the
unit cell of the two forward modes at 𝑓 = 4.2 kHz (panel a); and 4.155 kHz (panel b). Real (imaginary) part of 𝑢ev

2 (𝑢pr
2 ) is denoted in

black (purple). We observe how the eigenfunctions tend to align as the frequency approaches 𝑓EP3. Panels (c) and (d) mirror panels
(a) and (b), only for the normal stress 𝜎11, showing a similar trend.

Collectively, Figs. 6–8 demonstrate how

𝗌pr (𝟢) ≈ −𝗌ev (𝟢) ∝ |𝑓 − 𝑓EP3|
−1∕3, (34)

as 𝑓 → 𝑓EP3; the total field resulting from this destructive interference is sufficiently small to accommodate the continuity
conditions (29) at the interface between the half-space and the laminate.

We recall that the Bloch theorem (7) implies that the evanescent mode spatially decays at the rate 𝑒−𝑥1Im𝜅 . By contrast, real 𝜅
in Eq. (7) yields constant amplitude of the propagating mode. Hence, the evanescent mode creates a boundary layer near 𝑥1 = 0,
beyond which its contribution is negligible relative to the propagating mode. We follow Srivastava and Willis (2017), who defined
the end of the boundary layer at the distance where the magnitude of the evanescent mode is 10% of its amplitude at the interface.
Since (Im 𝜅)−1 ∝ |𝑓 − 𝑓EP3|

−1∕3, the boundary layer elongates as 𝑓 → 𝑓EP3. We demonstrate this phenomenon in Figs. 10(a),
10(b) and 10(c), which respectively show the squared magnitude of the total-, propagating- and evanescent displacement field
as functions of the distance from the interface. Indeed, we observe how the propagating mode maintains a constant magnitude,
while the evanescent mode undergoes exponential decay. As a result, the total displacement converges to propagating mode beyond
the evanescent boundary layer. In view of Eq. (34), this saturation value is two order of magnitudes greater than the magnitude of
the incident wave. We note that the rest of the field variables follow a similar trend, hence are not shown for brevity.

To further highlight these aspects of spatial evolution of the transmitted fields, we present in Fig. 11(a) the real part of 𝑢1, 𝑢ev
1

and 𝑢pr
1 along the first 5 unit cells near the interface. In agreement with Eq. (34), the propagating (pink curve) and evanescent (thin

black) components are opposite in sign and their sum, i.e., Re𝑢1 (thick blue), is two order of magnitudes smaller, namely,

Re 𝑢ev
1 ,Re 𝑢pr

1 ≫ Re 𝑢ev
1 + Re 𝑢pr

1 = Re 𝑢1. (35)

We reiterate that this destructive interference follows Eq. (34) in a way that satisfies the continuity conditions [Eq. (29)] at the
interface (𝑥1 = 0).

The propagating and evanescent modes fluctuate within their respective envelopes (Figs. 10(b) and 10(c), respectively). Fig. 11(b)
depicts these fluctuations across two additional segments of length 5ℎ: one segment that originates at 𝑥1 = 6500ℎ (curves with
diamond marks) and is inside the boundary layer; and a second segment that originates at 𝑥1 = 30000ℎ and is beyond the boundary
layer (solid curves). We observe how the evanescent mode decays and its value about 𝑥1 = 30000ℎ is at the order 10−10, such that
the axial displacement is approximately equal to the propagating mode, which maintains its amplitude. The imaginary part of the
axial displacement exhibits similar features up to a phase shift, hence omitted for brevity.
10
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Fig. 9. Vertical displacement distribution over the unit cell of the two forward modes at (a) 𝑓 = 4.2 kHz; and (b) 4.155 kHz. Real (imaginary) part of 𝑢ev
2 (𝑢pr

2 ) is
denoted in black (purple). Panels (c) and (d) are the same as (a) and (b), only for the normal stress 𝜎11. Collectively, they demonstrate how the eigenfunctions
tend to align as the frequency approaches 𝑓EP3.

Fig. 10. Squared magnitude of the (a) total; (b) propagating; and (c) evanescent displacement fields as functions of the distance from the interface. The magnitude
of 𝒖pr remains constant, while that of 𝒖ev vanishes, and hence |𝒖|2 → |𝒖pr|

2 away from the interface.

5. Conclusions

We derived the conditions for the coalescence of three natural modes in the spectrum of periodic elastic laminates composed
of two materials. This non-resonant exceptional point (EP) occurs in the Bloch spectrum, distinct from resonant EPs which are
the focus of most works. The first report of this type of non-resonant, third-order EP (EP3) was by Figotin and Vitebskiy (2003)
for electromagnetic waves; one of their conclusions was that in order to form EP3, the wavevector must have inclination in both
the horizontal and vertical directions. We showed that it is sufficient for elastic waves to have inclination only in the vertical
11
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b

Fig. 11. The axial displacement across different segments of length 5ℎ. (a) Near the interface with the half-space. Thin black, purple and thick blue curves
denote the real part of axial component of the evanescent boundary layer mode, propagating mode and total displacement, respectively. The individual modes
are opposite in sign and their sum satisfies the continuity conditions. (b) Inside the boundary layer at 𝑥1 = 6500ℎ (curves with diamond marks); and beyond the
oundary layer at 30000ℎ (solid curves). The evanescent mode decays and its value about 𝑥1 = 30000ℎ is at the order 10−10, such that the total axial displacement

is approximately equal to the propagating mode, which maintains its amplitude.

direction, i.e., to consider planar settings, in order to exhibit EP3. This practical simplification results from the tensorial richness in
elastodynamics, relative to electrodynamics.

Our analysis provides simple arguments for the need in axial spectral asymmetry to access EP3; and for the need in anisotropic
constituents to break that spectral symmetry. These arguments and the resultant algebraic conditions for EP3 are simpler than those
in the pioneering work of Figotin and Vitebskiy (2003). Our conclusions and derived conditions were never reported before, in spite
of the fact that elastic waves propagation in stratified anisotropic materials is a classical problem (Nayfeh, 1995).

We have demonstrated the formation of EP3 using the parameters of exemplary anisotropic materials that satisfy our derived
conditions. In electrodynamics, these EPs were shown to be associated with the generation of axially frozen modes in interface
problems. Anomalously, the energy flux of these modes in the axial direction is finite, despite having zero group velocity in that
direction (Figotin and Vitebskiy, 2003). In order to examine if it is possible to excite similar modes in planar elastic laminates, we
have revisited the canonical scattering problem of a plane wave incident on a semi-infinite laminate. Our analysis showed that if
the laminate is designed according to our criteria for EP3, then its total energy density diverges when the frequency approaches
the EP3 frequency, at the same rate that the group velocity decays, such that the energy flux remains finite. We further showed
that by shaping the incoming wave, it is possible to achieve unity transmittance at the EP3. To shed light on the physical origins
of the axial frozen modes, we have analyzed their comprising modes. The analysis shows that the frozen modes are the sum of a
propagating mode and an evanescent mode, which tend to align near the EP3; this coalescence is the hallmark of non-Hermitian
degeneracies. Their amplitude at the interface diverges such that their sum is small enough to satisfy the continuity conditions at
the interface. The evanescent mode decays away from the interface, forming a boundary layer beyond which the transmitted field
converges to the propagating mode, which maintains a constant large amplitude.
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Appendix A. Derivation of Eq. (3)

Using Voigt notation for the components of 𝐂, we can write the in-plane constitutive equations of anisotropic solids in the matrix
orm

⎛

⎜

⎜

⎝

𝜎11
𝜎22
𝜎21

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

𝐶11 𝐶12 𝐶16
𝐶12 𝐶22 𝐶26
𝐶16 𝐶26 𝐶66

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝜀11
𝜀22
2𝜀12

⎞

⎟

⎟

⎠

, (A.1)

where we recall that the components of the strain 𝝐 are related to the displacement field via 𝝐 =
(

∇𝒖 + ∇𝒖T
)

∕2. By inverting
Eq. (A.1) and substituting the resultant expressions for substituting the expressions for 𝜀11 and 𝜀12 into the constitutive equation for
𝜎22, we have that

𝜎22 =
1
𝛼1
[(𝛼4 + 𝐶22𝛼1)𝑢2,2 + 𝛼2𝜎12 + 𝛼3𝜎11] , (A.2)

where
𝛼1 =𝐶2

16 − 𝐶11𝐶66, 𝛼2 =𝐶12𝐶16 − 𝐶11𝐶26,

𝛼3 =𝐶16𝐶26 − 𝐶12𝐶66, 𝛼4 =𝐶2
12𝐶66 − 2𝐶12𝐶16𝐶26 + 𝐶11𝐶

2
26.

(A.3)

Next, we rewrite the balance of linear momentum using (A.2) in the form

(
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𝜎21

)

,1
= 1
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Combining Eq. (A.4) and the aforementioned relations for the strain components yields
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where 𝛼5 = 𝜌𝜔2 − 𝑘22𝐶22, or

𝜕
𝜕𝑥1

𝗌
(

𝑥1
)

= 𝖠
(

𝑥1
)

𝗌
(

𝑥1
)

, (A.6)

after factoring out the common 𝑥2- and 𝑡 dependencies.

Appendix B. On the energy flux in anisotropic solids and periodic media

The concepts detailed next can be found in the excellent treatises by Auld (1973) and Carcione (2001). We start with Poynting’s
theorem, leading to the notion of the acoustic Poynting vector

 ∶= −𝝈 ⋅ 𝐮̇, (B.1)

which provides the power flow density. For time-harmonic fields described using complex variables, it is useful to define the complex
Poynting vector as −𝝈 ⋅ 𝐮̇∗∕2, the real part of which is the time-average power flow density. With abuse of notation, we write

 = −1
2

Re
(

𝝈 ⋅ 𝐮̇∗
)

. (B.2)

The reciprocity theorem leads to the important relation that the energy velocity ∕𝐸 equals to group velocity 𝜕𝜔∕𝜕𝐤, or equivalently
that

 = 𝜕𝜔
𝜕𝐤

𝐸, (B.3)

where 𝐤 is the wavevector, and we recall that 𝐸 is the time-average total energy density [Eq. (24)]. So far, the treatment of
homogeneous anisotropic media has been identical to that of isotropic media; it departs at the calculation of the group velocity.
Homogeneous isotropic media are non-dispersive, such that  and 𝐤 parallel, and then the group velocity aligns with 𝐤, and the phase
elocity is direction-independent. By contrast, the solution of Christoffel equations reveals that anisotropic media are dispersive such
hat the phase velocity is direction-dependent. Accordingly, the group and energy velocities are not restricted to align with 𝐤.

To get an intuitive sense for the group velocity, consider a pair of one-dimensional waves with the same amplitude but the
requency and wavenumber of the second wave are small variations of those of the first wave. As a result, the wave packet can be
ritten as

cos(𝑘𝑥 − 𝜔𝑡) + cos[(𝑘 + 𝛿𝑘)𝑥 − (𝜔 + 𝛿𝜔)𝑡] = 2 cos( 1
2
𝑥𝛿𝑘 − 1

2
𝑡𝛿𝜔) cos(𝑘̄𝑥 − 𝜔̄𝑡), (B.4)

here 𝑘̄ (resp. 𝜔̄) is the average wavenumber (resp. frequency) of the two waves. Since 𝛿𝑘 ≪ 𝑘̄ and 𝛿𝜔 ≪ 𝜔̄, their function
epresents low frequency, long-wavelength modulation envelope of the high-frequency carrier, namely, cos(𝑘̄𝑥− 𝜔̄𝑡). The velocity of
13
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Fig. 12. (Left) Illustration of a wave packet in a 1D dispersive medium. The envelope of the packet (red curves) propagates in the axial direction with the
group velocity 𝜕𝜅𝜔 at constant amplitude. Dispersion can originates either from material anisotropy or from geometrical periodicity, in which case 𝜅 is the real
Bloch wavenumber. (Right) Illustration of evanescent Bloch wave with complex wavenumber, whose amplitude decays as function of 𝑥1.

the modulation is 𝛿𝜔∕𝛿𝑘. By extending this idea to the superposition of infinite number of waves and to two-dimensional settings,
we get that the velocity of the modulation envelope is 𝜕𝜔∕𝜕𝐤, like the group velocity.

The energy flux in periodic media has much in common with the energy flux in anisotropic media. To point out the similarities
between the two, we recall that the Bloch theorem states that free waves in periodic media must have the Bloch–Floquet form

𝒖 = 𝒖̃ (𝐱) 𝑒𝑖(𝜿⋅𝐱−𝜔𝑡), 𝒖 (𝐱 + 𝐫) = 𝒖 (𝐱) , (B.5)

where 𝜿 is the Bloch wavevector and 𝐫 is any lattice vector which defines the periodicity of 𝐂 and 𝜌. There are no assumptions
on the symmetry of 𝐂 in the derivation of the Bloch theorem, hence Eq. (B.5) holds for both isotropic and anisotropic periodic
media. The Bloch wavevector and the frequency are related through the dispersion relation, hence periodic media are dispersive,
like anisotropic homogeneous media. The concept of long-wavelength modulation envelope introduced for anisotropic homogeneous
media is identified now with the Bloch envelope; and the group velocity is identified now with the velocity of that Bloch packet
(see Fig. 12).

Analogous to Eq. (B.3), Willis (2015) has shown that for real Bloch wavevectors (see also Ref. Srivastava, 2016)

⟨ ⟩ = 𝜕𝜔
𝜕𝜿

⟨𝐸⟩ , (B.6)

where the angle brackets ⟨⋅⟩ denote averaging over one spatial period, i.e., over the unit cell. Like in the derivation of Eq. (B.3),
no assumptions were made on the symmetry of 𝐂 in the derivation of Eq. (B.6), except the usual ones that result from energy
conservation and the symmetry of the strain and stress (𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑗𝑖𝑘𝑙 = 𝐶𝑗𝑖𝑙𝑘 = 𝐶𝑙𝑘𝑗𝑖), hence it holds at the level of generality
of anisotropic constituents. Thus, like in homogeneous anisotropic media, the energy flux in periodic media made of isotropic
constituents is not necessarily parallel to the wavevector. Furthermore, in both media there are also evanescent modes with complex
wavenumber that do not carry energy on their own (see Section 3.4 and Fig. 12).

The similarities above between the energy flux in homogeneous anisotropic media and periodic media are not accidental: they
are consistent with the fact that in the homogenization limit, periodic media made of isotropic materials effectively respond like
homogeneous media with anisotropic effective properties (Laude et al., 2021). There are more than a few excellent works that show
this, e.g., using Craster’s irregular long-wavelength asymptotic dynamic homogenization (Antonakakis et al., 2014; Lefebvre et al.,
2017).

In view of the above, the energy flux in the medium that we analyze, i.e., a laminate made of anisotropic phases, can be
considered as the energy flux in a higher-rank laminate made of isotropic phases. The equations in Section 3.4 are specialization of
some of the equations given here to the case where the periodicity is only along 𝑥1.

Appendix C. Finite element computational simulations

For our computational simulations, we used the solid mechanics module with time-dependent study in the finite element-based
commercial software COMSOL Multiphysics® 5.6. We excited 40 cycles of sinusoidal waves at a line load which is located at the left
dge of the homogeneous material; to excite pressure (shear) waves, the excitation direction is normal (parallel) to the line load. To
educe spurious reflections at the spatial domain boundaries, we used COMSOL’s low-reflecting boundary conditions. The domain
s discretized into a four-node structured quadrilateral mesh with a maximum element size of 4 mm. The element size was chosen
uch that it is less than one-sixth of the wavelength of the wave under consideration. We set a relative tolerance of 0.1% in error
or the convergence of the finite element analyses. To estimate the energy flux, and in turn the transmittance and refraction angles,
e have calculated the line average of the mechanical energy flux.
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