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ABSTRACT

The manipulation of mechanical waves is a long-standing challenge for scientists and engineers, as numerous devices require their control.
The current forefront of research in the control of classical waves has emerged from a seemingly unrelated field, namely, non-Hermitian
quantum mechanics. By drawing analogies between this theory and those of classical systems, researchers have discovered phenomena that
defy conventional intuition and have exploited them to control light, sound, and elastic waves. Here, we provide a brief perspective on recent
developments, challenges, and intricacies that distinguish non-Hermitian elastodynamics from optics and acoustics. We close this perspective
with an outlook on potential directions such as topological phases in non-Hermitian elastodynamics and broken Hermitian symmetry in
materials with electromomentum couplings.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0224250

I. INTRODUCTION

The past two decades have shown that the properties of artificial
materials can be tailored to exhibit extraordinary dynamic behavior
and properties by cleverly engineering their composition and structure.
The development of such metamaterials is a prominent thrust in engi-
neering today.' ” The principal focus of metamaterial research is tai-
lored wave control based on the design of subwavelength structure.
Elastic waves are of particular interest given the numerous mechanical
applications that require their control, such as vibration isolation,
impact mitigation, ultrasonography, energy harvesting, and stealth, to
name just a few.

Currently, the forefront of research in the control of classical
wave motion emerged from a seemingly unrelated field, namely, quan-
tum mechanics, with the development of its non-Hermitian formal-
ism.'”'* This formalism describes open quantum systems that
exchange energy with their environment, resulting with non-
orthogonal or even colinear natural modes and degenerate eigenvalues
in contrast to Hermitian systems whose natural modes are orthogonal.
By drawing analogies between this formalism and those of classical sys-
tems,”” " researchers have discovered phenomena that defy conven-
tional intuition and have used them to control light,zo’26 sound,”” !

and elastic waves.”” " Of all the branches of classical physics, these
concepts were least studied in elastodynamics, in spite of (or potentially
due to) the fact that elastodynamics exhibits a distinct tensorial rich-
ness. In this perspective, we discuss the intricacies and challenges that
distinguish non-Hermitian elastodynamics from optics and acoustics,
review some of the recent developments in this field, and present an
outlook to potential directions from the current state-of-the-art.

Il. BACKGROUND

Eigenvalue problems are ubiquitous in physics: they describe the
natural modes of the relevant system using a suitable operator.
Formally, they may be written as J¢¢ = ¢, where S is an operator
acting on the natural mode ¢, generating its multiplication by the
(possibly complex) eigenvalue o. In quantum mechanics, the operator
is called the Hamiltonian, which operates on the wave function in the
Schrodinger equation. One of the fundamental postulates in quantum
mechanics is that the Hamiltonian exhibits a mathematical symmetry
termed “Hermiticity,” which ensures real eigenvalues and is associated
with energy conservation.”® "’ On a basic level, Hermiticity implies
that for any two functions ¢ and ¢ in a function space endowed with
an inner product (-, -), the Hermitian operator ¢ satisfies
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Strikingly, Bender and Boettcher'’ discovered that Hamiltonians with
so-called #.7 symmetry may also support real spectra. Unlike the
eigenmodes of Hermitian operators, the eigenmodes of &7 -symmet-
ric operators are no longer orthogonal one to another. In the extreme
case, these modes may even coalesce together with their eigenvalues at
the so-called “exceptional points” (EPs).”**"** These non-Hermitian
degeneracies arise when suitable parameters of non-Hermitian systems
are appropriately tuned. Near EPs, the functional dependency of the
eigenvalues on these parameters defines self-intersecting Riemann
sheets, as shown in Fig. 1.
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FIG. 1. The (a) real and (b) imaginary parts of the eigenvalues as functions of two
suitable parameters of a non-Hermitian operator. For critical values of the two
parameters, the Riemann sheets degenerate to a so-called exceptional point. The
gray curves depict a loop around the EP, which results in a different state, owing to
the multi-valued nature of the Riemann sheet. Conventional research on non-
Hermitian systems considers the natural frequencies as the eigenvalues and
requires material gain (or loss) to be one of the parameters. In a recent paradigm
shift,”*° the EPs are designed in the wavevector space, using the unique coupling
of elastic wave polarizations. Thus, the EPs are formed without material gain or
loss, and the parameters that control the wavevector are the tuning parameters.
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EPs and the unique topology around them are the source of fasci-
nating counterintuitive phenomena such as chiral modes,” supersensitiv-
ity,"” and unidirectional zero reflection.”” While the bulk of the research
(and the above discussion) considers 2.7 -symmetric Hamiltonians,
they belong to a larger class of non-Hermitian Hamiltonians' """ that
can exhibit real eigenvalues and EPs at critical values of a suitable param-
eter set. Understanding that these phenomena rely upon the nature of
eigenvalue problems associated with the wave operator has led to their
dissemination in other wave physics. We summarize next the fundamen-
tal operators in the different classical systems in order to highlight the
uniqueness of non-Hermiticity in elastodynamics.

In photonics, Maxwell’s equations can be expressed in the form
of an eigenproblem’"”” for the magnetic eigenmodes H and their fre-
quencies @ (the electric field can be determined subsequently).”” The
corresponding wave operator is a function of the second-order dielec-
tric tensor € (since the permeability of most materials is very close to
the vacuum permeability’”). Magnetic waves are subjected to the con-
straint V - H = 0, hence do not support longitudinal modes and are
classified as transverse waves.

In acoustics, i.e., in the study of waves in gases and liquids with-
out resistance to shear deformation,” the eigenvalue problem can be
expressed as a scalar equation for the pressure field, whose operator
depends on the mass density p, and bulk modulus, K, of the fluid in
which waves propagate.”* The velocity field v of acoustic waves is sub-
jected to the constraint V x v = 0, and thus, transverse waves are not
supported. Acoustic waves are longitudinal pressure waves, which are
also referred to as dilatational or volumetric waves,” since they are
accompanied by volume change, in contrast to transverse waves, i.e.,
shear waves that are isochoric.

In solid mechanics, the elastodynamics equations can be formu-
lated as an eigenvalue problem for the time- and space-dependent
displacement vector field wu(x,t) of material points (see the
supplementary material). The wave operator is a function of the mass
density and the elasticity tensor of the solid, C. Its simplest form is the
Christoffel equation™” for bulk plane waves in the n direction:
K*p~T'(u) = w?u, where k is the wavenumber and the components
of the Christoffel operator are I'yx = Cyjyn;n;. The first source of rich-
ness originates from the dimension of C, which is a fourth order tensor
and thus constitutes a larger design space in comparison with photon-
ics and acoustics. Second, unlike the magnetic field (subjected to
V-H=0) and the velocity field in acoustics (subjected to
V x v = 0), the displacement field u(x, t) is not subjected to any dif-
ferential constraint. Thus, even the simplest solids (conservative, iso-
tropic, and homogeneous) support both transverse and longitudinal
wave polarizations. These inherent modes can be coupled one with the
other, a coupling that gives rise to unique physics.”

Most works on non-Hermitian physics focus on problems of the
type mentioned above, in which the frequency (squared) is the eigen-
value and corresponds to the propagation of free waves owing to some
impulsive excitation, i.e., in the absence of a constant excitation.
Assuming real wavenumbers (no radiation losses), the breaking of
Hermitian symmetry (i.e., accessing complex frequencies and nonor-
thogonal eigenmodes) in these problems requires material loss or gain.
While optical gain is well established using stimulated emission, gener-
ating and controlling elastic gain remains a challenge. We list the
recent advances for tackling this challenge in the first part of Sec. II,
together with their applications.
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Less explored from the perspective of non-Hermitian physics, a
dual class of problems involves a formulation where the wavenumber
is the eigenvalue and the frequency is a prescribed real quantity (see
the supplementary material). This formulation pertains to conservative
media with open boundaries and sustained driving sources. Recent
progress has utilized the unique coexistence and coupling of wave
polarizations in elastodynamics to engineer EPs in such conservative
solids, thus circumventing the challenges associated with the design of
material gain and loss.”” " The second part of Sec. III expands on the
works that introduced this approach and how they capitalized on
emergent non-Hermitian features to manipulate elastic waves.

lll. RECENT DEVELOPMENTS

As discussed in Sec. II, the common approach for breaking
Hermitian symmetry requires the careful design of material loss and
gain. Piezoelectric materials are therefore natural candidates to achieve
non-Hermitian behavior in elastodynamic systems due to their ability
to convert electric energy into mechanical energy and vice versa. In a
series of works,”” °* Christensen and collaborators developed a proce-
dure that exploits the acousto-electric effect in piezoelectric semicon-
ductors for material gain, thereby synthesizing 4.7 -symmetric elastic
media® and breaking elastodynamic reciprocity.”* When an acoustic
field impinges on a piezoelectric semiconductor slab, a coherently
oscillating electric charge is created. Superposing a sufficiently high
DC electric field corresponding to a supersonic carrier drift speed leads
to sound amplification by virtue of phonon emission, an effect known
as acoustic Cherenkov radiation. In particular, this acousto-electric
effect has been employed for two demonstrations. First, stacking multi-
ple piezoelectric semiconductors was shown to generate a system with
balanced loss and gain with associated non-Hermitian properties, if
the layers are adequately electrically loaded.”* Next, a theoretical non-
Hermitian Su-Schrieffer-Heeger demonstration was made using the
same approach. In that case, the non-Hermitian skin effect and the
ensuing failure of both the Bloch band topology were demonstrated.””
We note, however, that experimental demonstration of the latter theo-
retical prediction has not yet been provided.

A more conventional approach to use piezoelectric materials is to
shunt them through electrical circuits of resistors, capacitors, and
inductors,”” which collectively generate tunable elastic gain loss.”**
Assouar’s group proposed a tunable 2.7 -symmetric elastic beam
based on such shunted piezoelectric elements.”” They later employed
this concept for negative refraction of flexural waves.” Similarly,
Huang’s group employed shunted piezoelectric patches attached to a
P T -symmetric elastic beam that displayed asymmetric flexural wave
scattering,”*

Ruzzene and colleagues have also used shunted piezoelectric
arrays to generate spatiotemporal modulation of the elastic modulus,
thereby breaking reciprocal elastic wave transport for flexural
waves.””*° This approach was later employed by Erturk and col-
leagues.”” to demonstrate the formation of a resonant EPs. Such mate-
rials that violate time invariance can exhibit a wide array of
nonreciprocal wave phenomena such as one-way wave amplification
and attenuation.”” "’ From a modeling perspective, the constitutive
parameters and phase velocity become time-dependent. These works
specifically considered modulations in the form of progressive periodic
waves (“pump waves”), which create a spatiotemporal bias and nonre-
ciprocal wave motion as a function of the modulation. Small-
amplitude medium-speed modulations lead to a Bragg scattering
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regime; faster modulations can be described by an equivalent medium
with effective properties; and slower but higher-amplitude modula-
tions lead to an adiabatic regime.”” This nonreciprocal wave propaga-
tion is fundamentally different from one-way Bragg reflection, but can
still be leveraged for the purposes of one-way mirroring, especially at
low frequencies where wide bandgaps are seldom available. In this sce-
nario, Hooke’s law no longer applies and must be replaced by constitu-
tive relations of the Willis form,”' "> which state that the stress and
linear momentum depend both the strain and velocity fields (more
precisely, the stress depends on the acceleration or time-history of the
velocity, such that there is no contribution to the stress if the velocity is
constant in time’*). The Willis parameters in the case of spatiotempo-
ral modulations capture the nonreciprocal nature of the modulated
microstructures.”® Indeed, Willis materials offer another platform for
breaking the Hermitian nature,”” as we discuss later.

Collectively, the works above have tackled the important chal-
lenge of generating gain in elastic materials in order to break temporal
Hermiticity. However, gain is not a necessity for realizing EPs and
some of their associated features are accessible using loss alone, an
inherent feature of viscoelastic materials. Indeed, Shmuel and
Moiseyev’® showed that the introduction of a viscoelastic part in an
elastic slab may generate EP of two modes (EP2) in the spectrum of
the assembly. They applied non-Hermitian perturbation theory previ-
ously developed in quantum mechanics to determine the conditions
under which this occurs and employed the resultant topology around
the EP for mass sensing with enhanced sensitivity. Similarly,
Dominguez-Rocha et al”” used differential loss instead of gain and
loss to form EP2. While the modes they analyzed were structural
modes (torsional modes of pillars) rather than elastodynamics modes,
their work is one of the few experimental demonstrations of the sensi-
tive frequency splitting near EP of a mechanical system.

The nonconservative nature of the media presented so far mani-
fests itself through time-dependent constitutive equations and hence
complex elastic moduli. These, in turn, yield complex frequencies for
the Christoffel equation. Another type of nonconservative media are
Cauchy-elastic media:"® the work done by the stress in such media
generally depends on the deformation path, and therefore cannot be
derived from a strain energy function. As a result, the elasticity tensor
no longer exhibits the major symmetry that is needed to ensure real
frequencies in the Christoffel equation. Under the name “odd elastic-
ity,” Vitelli and colleagues””" set forth a model of active material with
nonconservative microscopic interactions that generate odd elastic
moduli and studied the non-Hermitian elastodynamics of such materi-
als with odd elasticity (top circle in Fig. 2). They demonstrated that in
isotropic solids with odd elasticity, the wave polarizations (eigenmo-
des) are no longer orthogonal and may even become colinear for a
threshold value of the elastic moduli. This EP marks the transition to
odd-elastic waves with circular polarization.””

Active material systems displaying odd elasticity have been exper-
imentally demonstrated by introducing piezoelectric elements and
motors controlled by electrical circuits, or spinning networks into host
media.”"** Chen et al.** considered 1D non-Hermitian metamaterial
in which each unit cell consists of three piezoelectric patches mounted
on a steel beam. The metabeam was assumed to have two modes of
deformation including bending and shearing. These modes of defor-
mation in turn induce a shear stress ¢ and a bending moment, M. The
crucial difference between this non-Hermitian beam and a traditional
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FIG. 2. Possible non-Hermitian constitutive operators in elastodynamics. Elastic
materials may exhibit odd elastic tensor (C = —CT), Willis materials may exhibit
odd Willis- (S = —ST) and density (p = —p") tensors, and electromomentum
materials may exhibit odd electromomentum tensors (W = —WT).

beam is the presence of internal energy sources that violate energy con-
servation. By designing the feedback to create non-reciprocal coupling
between the elongation s and shear b, the constitutive relation of the
metabeam takes the form of odd elasticity,

I |

i.e., the electronic feedback between the piezoelectric patches induces a
new modulus P, in addition to the shear and bending moduli x and B,
respectively. Because the energy differential is 6y = ods + Mob, the
asymmetric part of the matrix corresponds to a violation of Maxwell-
Betti reciprocity. The parity-violating, nonconservative modulus P also
induces unidirectional wave amplification. For finite structures, these
non-Hermitian systems with odd elasticity exhibit non-Hermitian 1D
and 2D skin effect and non-Hermitian Rayleigh wave propagation.”**’
The skin effect in the non-Hermitian system is defined as the case
where bulk modes behave as the skin modes collapsing at the open
boundaries. Recently, the design of active microstructure for a 2D
non-Hermitian odd plate with odd density through feed-forward inter-
actions was suggested to explore a series of unconventional wave phe-
nomena when conventional Timoshenko plate mechanics meets with
non-Hermiticity.”**” Those works numerically and experimentally
demonstrated nonreciprocal wave amplification and attenuation phe-
nomena along with direction-dependent dispersion control of flexural
waves in 2D odd plates.

The approaches mentioned so far to design non-Hermitian elas-
todynamics can be generalized using Willis materials,”">** which
exhibit a different conversion of strain energy and kinetic energy rela-
tive to conventional materials.”” This distinct mechanism is reflected

PERSPECTIVE pubs.aip.org/aip/apl

by the Willis tensors S and § and tensorial mass density p appearing
in nonlocal constitutive equations, analogous to the bianisotropic
equations in electromagnetism.””** In the spatially local limit, time-
harmonic case, the constitutive (Milton-Briane-Willis®**®%) equations
take the form g = Cyjur; — Siiity/ (i) and p; = pijitj — Sijkitix/
(iw). Extending the concept of odd elasticity to odd mass density and
odd Willis tensors thus breaks Hermitian symmetry in the Christoffel
equation, giving rise to complex frequencies. This translates to design-
ing a Willis material such that one of the symmetries p; = pj;, Szk
= Sy is broken (left circle in Fig. 2). Huang and collaborators °
designed and experimentally realized such active microstructure that
gives rise to odd mass density. They further demonstrated the forma-
tion of EPs of transition between stable and unstable waves, directional
wave amplification, and non-Hermitian skin effect in the medium. In
another collaboration,”’ they experimentally realized odd Willis cou-
plings in active flexural media using piezoelectric sensor—actuator pairs
controlled with digital circuits, giving rise to nonreciprocal wave prop-
agation. Li and collaborators’" introduced loss to a Willis beam and
showed the formation of EP in the scattering matrix for flexural waves,
at which there occurs unidirectional zero reflection.

Building upon these works probing gain and loss in elastic mate-
rials, Psiachos and Sigalas™ showed that coupled transverse-
longitudinal elastic waves scatter asymmetrically from alternating
layers with gain and loss. Importantly, they later realized that the cou-
pling between transverse and longitudinal waves is sufficient to gener-
ate asymmetric scattering even without gain and loss.””

All the developments that are listed above rely upon material
gain, loss or their combination in order to access non-Hermitian
features in elastodynamics. Recently, Shmuel’s group”’ introduced a
distinct paradigm to eliminate the need for material gain or loss
by breaking spatial Hermitian symmetry using the tensorial nature
that is unique to elastodynamics. From a mathematical perspective,
they designed the non-Hermitian part of the operator for the wave-
numbers instead of the operator for the natural frequencies (see the
supplementary material). From a mechanical perspective, the analysis
is of a conservative solid with open boundaries and sustained driving
source. More specifically, they revisited the canonical scattering
problem of monochromatic plane waves impinging on a semi-infinite
periodic laminate made of two conservative isotropic materials.”” By
designing the unit cell, they tuned the energy transfer between the two
elastic polarizations at the material interfaces such that two of the for-
ward (quasi-transverse and quasi-longitudinal) Bloch modes coalesce
inside the Brillouin zone™ [Fig. 3(a) (Multimedia view)]. This is in
sharp contrast to the well-known scenario of degeneracies at the band
edges between forward and backward Bloch modes of the same
polarization.”

The EPs that are associated with this non-Hermitian eigenmode
degeneracy are formed in the complex wavevector space, in contrast to
the gain and complex frequency parameter space as in the works dis-
cussed above. These non-resonant EPs are surrounded by a self-
intersecting Riemann surface [Fig. 3(b)], whose curvature is related to
the energy flow and therefore the unique topology of these surfaces
can be leveraged for anomalous energy transport. For example, Lustig
et al.”’ showed that these spatial EPs give rise to negative refraction
[Fig. 3(c)], as they are the crossing of branches of opposite slopes. This
phenomenon was experimentally demonstrated recently by Li et al.””
The key point is that, contrary to previous works discussed above, the

Appl. Phys. Lett. 125, 230501 (2024); doi: 10.1063/5.0224250
© Author(s) 2024

125, 230501-4

1¥:2€:60 $20Z Joqueded €0


https://doi.org/10.60893/figshare.apl.c.7534326
pubs.aip.org/aip/apl

Applied Physics Letters

parameters of the Riemann surface about the non-resonant EPs do not
correspond to material gain or loss, but, e.g., the angle of the incident
wave as depicted in the left half-space in Fig. 3(c). Subsequently,
Srivastava’s group”* developed designated tools to further analyze the

Im k:Bh

Im kyh

i

FIG. 3. (a) The coalescence of two Bloch modes of the exemplary conservative
laminate considered by Lustig et al.*’ The EPs are shown in a cut in the frequency-
Bloch wavenumber (f, kg) diagram for normalized vertical wavenumber koh = 0.5
about 181.2kHz. Re kg and Im kg are shown in solid and dashed curves, respec-
tively. The real and imaginary parts of a certain branch are plotted using the same
color. (b) One of the Riemann sheets associated with this EP in the wavevector
space. The solid and dashed curves illustrate the asymmetric nature of a loop
around the EP. One direction (solid curve) is adiabatic and the other (dashed curve)
is non-adiabatic, resulting in a different state at the end of the loop. (c) Full-wave
finite element simulations of the axial energy flux in the pertinent scattering problem
near the EP. The energy flux is preserved in the laminate and exhibits negative
refraction. Figure adapted from Lustig et al.*® Multimedia available online.
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non-Hermitian operator, its EPs and scattering spectrum, suggesting
its connection to resonance trapping.

In a subsequent work,"” Shmuel’s group designed the coalescence
of three Bloch modes (EP3) by replacing one of the isotropic materials
in the unit cell with anisotropic one. This non-resonant higher degen-
eracy further expands the toolbox for elastic wave shaping by forming
waves with zero axial group velocity and finite transmittance (known
as “axially frozen modes”®), which can even reach unity [Fig. 4(b)
(Multimedia view)]. Notably, these modes, which were previously dis-
covered in 3D dielectric laminates,” are now accessible in simpler, pla-
nar settings in elastodynamics, thanks to its distinct tensorial richness.
The theoretical model used is an idealization of any experimental reali-
zation, and therefore, its results are limited by practical deviations such
as material defects and finiteness of the specimen. The results are also
limited by nonlinear effects brought by frozen modes with inherent
large amplitude.

Additional useful phenomena are accessible by combining non-
resonant EPs with gain and loss. For example, such combination ena-
bles the encirclement of non-resonant EPs in a suitable parameter
space, a process that is known to be asymmetrically non-adiabatic.””*’
This means that the physical system will follow its instantaneous eigen-
mode when subjected to a loop in the parameter space, only along one
of the two possible orientations of the loop. The solid (counterclock-
wise) and dashed (clockwise) curves in Fig. 3(b) demonstrate such adia-
batic and non-adiabatic state evolution, respectively. Elbaz et al.'”’
carried out such an encirclement around non-resonant EP2 of forward
and backward longitudinal Bloch waves in elastic laminates, using spa-
tial modulation of gain and loss. They discovered that the starting point
of the loop governs several unusual features. For example, the laminate
may act as a source or a sink of energy, exhibit reflectance greater than

(a)

(b)

FIG. 4. (a) Coalescence of three Bloch modes of the exemplary conservative lami-
nate considered by Fishman et al."® This EP3 is shown in a cut in the (f, kg) dia-
gram for normalized vertical wavenumber k,h = 0.15 about 4.15kHz. Re kg and
Im kg are shown in solid and dashed curves, respectively. The real and imaginary
parts of a certain branch are plotted using the same color. (b) Full-wave finite ele-
ment simulations of the axial energy flux in the pertinent scattering problem near
the EP, giving rise to axially frozen modes with unity transmittance. Figure adapted
from Fishman et al.*” Multimedia available online.
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unity, and accommodate spatial asymmetry in the energy flow with
respect to the incidence direction, depending on that starting point.
Encircling EPs provides another unexpected benefit in the form of a
highly efficient algorithm for sorting eigenvalue bands, as observed by
Lu and Srivastava,’' who exploited EPs to distinguish real crossings
from level repulsion zones in the real phononic spectrum.

IV. FUTURE DIRECTIONS

A future avenue that has been thoroughly explored in acoustics
and photonics concerns non-Hermitian topology.'”” Non-Hermitian
topology refers to the study of topological properties in systems that
do not satisfy the Hermitian symmetry. In other words, non-
Hermitian topology explores the emergence of topological phenomena
in systems containing lossy and amplifying components. One of the
key concepts in this field is the non-Hermitian skin effect. This effect
refers to the near-complete localization of all eigenstates at the
boundaries of a system owing to complex winding structures in non-
Hermitian system’s eigenvalues. This phenomenon is driven by nonre-
ciprocal hopping, where particles preferentially move in specific
directions, breaking translational symmetry. As a result, the conven-
tional Bloch band theory fails to describe the system, leading to an
unusual localization of bulk states at the boundaries. The effect has
intriguing implications in the study of open quantum systems and has
broadened our understanding of localization phenomena, especially in
a topological contexts, even considering mechanical vibrations. Using
planar mechanical metamaterials, several numerical'”® and experimen-
tal®*'"* works demonstrated how the eigenstates become localized at
the boundary rather than uniformly distributed throughout the bulk.
Targeting elastodynamic non-Hermitian bulk states at interfaces
beyond the plane remains an intriguing area of research to pursue.
Other exciting directions include combining lattice symmetry and
non-Hermiticity and other phenomena that are elusive in elastody-
namics such as non-Hermitian Weyl exceptional rings, non-
Hermitian higher-order topology with vibrating complex corner states,
and non-Abelian permutations'’* of mechanical states.

A completely uncharted direction is the breaking of Hermitian
symmetry in materials that display electromomentum couplings.*'** "%’
The electromomentum couplings were theoretically discovered by
Pernas-Salomén and Shmuel'” using a generalization of Willis’
dynamic homogenization method’” to composites made of constitu-
ents that mechanically respond to non-mechanical stimuli. For the
case of piezoelectric constituents, the method revealed that the electric
displacement field (D) constitutively depends on velocity and that the
macroscopic linear momentum constitutively depends on the electric
field (—V¢). These two couplings are captured in terms of two
second-order tensors (W and W) called the electromomentum tensors,
in direct analogy with the Willis tensors. These coupling tensors cap-
ture macroscale effects resulting from spatial symmetry-breaking on
the microscale and nonlocal interactions.*”'>'"* For the Willis cou-
plings, it is the asymmetry in the elastic impedance that forms their
local part, while for the electromomentum coupling, it is the asymme-
try in the piezoelectric profile. Notably, the piezoelectric couplings also
emerge from broken spatial symmetry in the atomic structure.
Depending on the circuit conditions, the electromomentum coupling
can modify the phase velocity (like the piezoelectric coupling) and
introduce a directional phase angle to the characteristic elastic imped-
ance (like the Willis coupling). In symbolic matrix notation, the spa-
tially local limit of these constitutive equations is

pubs.aip.org/aip/apl

4 cC B S Vu
D|=|B -A W Vo |, (3)
p S W u

where A is the permittivity tensor and B and B capture the direct- and
inverse piezoelectric effect, respectively; collectively, these equations
take a trianisotropic form."'” Note that the constituents of such compo-
sites are piezoelectric and do not display Willis nor electromomentum
coupling, To date, studies''' """ have been restricted to materials with
electromomentum tensors that are Hermitian adjoints, "’ which implies
that the local electromomentum tensors satisfy W,-j = Wj;. However,
considering the works listed in Sec. III that exploit piezoelectricity to
generate material gain, this platform naturally lends itself to non-
Hermitian physics, the simplest of which is of odd electromomentum
tensors (Wj = — Wj,-, right circle in Fig. 2). The implications of break-
ing this symmetry on elastic waves and how to realize designs with odd
electromomentum tensors are yet to be explored and constitute excel-
lent candidates to extend this approach for elastic wave control.

SUPPLEMENTARY MATERIAL

See the supplementary material for the mathematical framework
for non-Hermitian operators in elastodynamics, with both frequencies
and wavenumbers considered as eigenvalues.
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