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a b s t r a c t 

The band structure of a periodic medium describes which wave frequencies, termed gaps, 

it filters out, depending on the medium composition. Shmuel and Band (2016) discovered 

that all infinite band structures of two-phase laminates impinged by normal waves are re- 

markably encapsulated in a finite geometric object, independently of the specific laminate 

composition. We here unveil a generalized object that encapsulates the band structures of 

all multiphase laminates impinged by normal waves. The merit of such a universal object 

is more than mathematical beauty—it establishes a platform for unprecedented characteri- 

zation of the band structure. We specifically exploit it to rigorously determine the density 

of the gaps in the spectrum, and prove it exhibits universal features. We further utilize 

it to formulate optimization problems on the gap width and develop a simple bound. Us- 

ing this framework, we numerically study the dependency of the gap density and width 

on the impedance and number of phases. In certain settings, our analysis applies to non- 

linear multiphase laminates, whose band diagram is tunable by pre-deformations. Through 

simple examples, we demonstrate how the universal object is useful for tunability charac- 

terization. Our insights may establish a step towards engineering filtering devices accord- 

ing to desired spectral properties. 

© 2018 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Periodicity in a transmission medium of waves renders their propagation frequency dependent, even when the medium

pointwise properties are not ( Hussein et al., 2014 ). The resultant propagation can exhibit exotic or metamaterial charac-

teristics, such as negative refraction and wave steering ( Lu et al., 2009; Zelhofer and Kochmann, 2017 ). In addition to the

intriguing nature of metamaterials, they have functional potential in applications such as cloaking and superlensing ( Colquitt

et al., 2014; Milton et al., 2006; Pendry, 2000 ). 

Laminates—the media addressed in this paper—have the simplest periodicity, as their properties change only along one

direction. Surprisingly, new results on their dynamics are still reported by ongoing research, e.g. , metamaterial behavior

of laminates ( Bigoni et al., 2013; Nemat-Nasser, 2015; Srivastava, 2016; Willis, 2016 ), field patterns in laminates with time

dependent moduli ( Milton and Mattei, 2017 ), and dynamic homogenization of laminates ( Joseph and Craster, 2015; Nemat-

Nasser and Srivastava, 2011; Nemat-Nasser et al., 2011; Sheinfux et al., 2014; Srivastava and Nemat-Nasser, 2014 ). 

We are concerned with the most familiar phenomenon: annihilation of waves at certain frequencies and corresponding

emergence of a band-gap structure in the infinite spectrum ( Kushwaha et al., 1993; Sigalas and Economou, 1992 ). The band
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Fig. 1. Laminates with different periodic cells. The band structure describes which frequency bands are of propagating waves (middle laminate), and which 

frequencies belong to gaps of decaying waves (right laminate), depending on the periodic cell composition. In this work, we unveil a generalized object 

that encapsulates the infinite band structures of all multiphase laminates impinged by normal waves, independently of the specific composition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

structure describes which frequency bands are of propagating waves, and which frequencies belong to gaps of decaying

waves. The range of these gaps varies from one laminate to another, as function of composition, i.e. , the thickness and

mechanical properties of the comprising layers ( Fig. 1 ). These gaps are not only physically interesting, they may also be

exploited to absorb undesired vibrations and filter noise ( e.g. , the realizations of Babaee et al., 2016; Matlack et al., 2016 ,

using more complex periodicities). Hence, a complete characterization of band structures and their relation to the laminate

composition is also of applicational importance. For waves at normal incident angle, Shmuel and Band (2016) discovered

that all band structures of laminates with two alternating layers are remarkably derived from a finite geometric object,

independently of each layer thickness and specific physical properties. They used this universality with respect to the layer

properties to obtain unprecedented characterization of the band structures. Specifically, they rigorously derived the maximal

width, expected width, and density of the gaps, i.e. , the relative width of the gaps within the entire spectrum. Finally,

Shmuel and Band (2016) conjectured that such universality also exists for laminates made of an arbitrary number of phases.

In what follows, we unveil a finite generalized object—a compact manifold—that encapsulates the band structures of all

multiphase laminates impinged by normal waves. We employ it to answer several interesting questions , e.g. , can the gap

density be increased by adding more phases? If so, what are the optimal compositions that maximize it? Can we enlarge

specific gaps in the same way? Our answers and insights may establish a step towards finding their counterparts in more

complex systems and, in turn, engineering filtering devices according to desired spectral properties. 

The bulk of our analysis is presented in the framework of linear infinitesimal elasticity; in the sequel we show that in cer-

tain settings it extends to finite elasticity. Specifically, we show that our analysis applies for incremental waves propagating

in non-linear multiphase laminates subjected to piecewise-constant finite deformations. Similarly to the case of finitely de-

formed two-phase laminates, the resultant band diagram is tunable by the static finite deformation ( Shmuel and Band, 2016 ,

cf. , Zhang and Parnell, 2017 ); through simple examples, we demonstrate how the universality of our representation is useful

for characterizing this tunability. 

We present our results in the following order. Firstly, in Sec. 2 we revisit the derivation of the dispersion relation for mul-

tiphase laminates, from which the band structure is evaluated. Sec. 3 contains our theory; therein, we show that all infinite

band structures of multiphase laminates are encapsulated in a compact universal manifold, whose dimensionality equals

the number of layers in the periodic cell. We find that the gap density is the volume fraction of a universal submanifold,

derive a closed-form expression for the submanifold boundary, and hence for the gap density. We further employ the new

framework to provide a simple bound on the gapwidth and formulate corresponding optimization problems. Sec. 4 employs

our formulation to answer the questions posed earlier, via parametric investigation of the compact manifold. Sec. 5 details

how our theory extends to non-linear multiphase laminates of tunable band diagrams, and demonstrates its application for

characterizing this tunability. Finally, we summarize our results in Sec. 6 . 

2. Wave propagation in multiphase laminates 

2.1. Dispersion relation 

The solution to the problem of wave propagation in periodic laminates is well-known ( Rytov, 1956 ); the topic receives

renewed attention recently, owing to its applications in the context of metamaterials ( Srivastava, 2016; Willis, 2016 ). For

the reader convenience, this Sec. concisely recapitulates the formulation for multiphase laminates ( Lekner, 1994 ), in the

framework of linear elasticity. 

A laminate is made of an infinite repetition of a unit cell comprising N layers. We denote the thickness, mass density,

and Lamé coefficients of the n th layer by h ( n ) , ρ( n ) , λ( n ) and μ( n ) , respectively. We consider plane waves propagating normal

to the layers at frequency ω. The equations of motion are satisfied by a displacement field which can be written in each
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layer as 

u 

( n ) = m 

(
A 

( n ) e ik 
( n ) n ·x + B 

( n ) e −ik ( n ) n ·x )e −iωt , (1)

where n is the lamination direction, A 

( n ) and B ( n ) are constants, the wavenumber k ( n ) equals ω 
c ( n ) 

, c ( n ) being the velocity that

depends on the polarization m , namely, 

c ( n ) = 

√ 

˜ μ( n ) 

ρ( n ) 
= 

⎧ ⎨ 

⎩ 

√ 

μ( n ) 

ρ( n ) , m ⊥ n , √ 

λ( n ) +2 μ( n ) 

ρ( n ) , m ‖ n . 

(2)

It follows that u 

( n ) and the traction t ( n ) at the borders of each layer are related via {
u 

( n ) 
(
x + h 

( n ) n 

)
t ( n ) 
(
x + h 

( n ) n 

)} = 

[
cos k ( n ) h 

( n ) sin k ( n ) h ( n ) 

˜ μ( n ) k ( n ) 

− ˜ μ( n ) k ( n ) sin k ( n ) h 

( n ) cos k ( n ) h 

( n ) 

]{
u 

( n ) ( x ) 
t ( n ) ( x ) 

}
. (3)

Invoking continuity conditions and sequentially applying Eq. (3) yields the following relation between the fields at the ends

of the periodic cell {
u 

( N ) ( x + h n ) 
t ( N ) ( x + h n ) 

}
= 

N ∏ 

n =1 

[
cos k ( n ) h 

( n ) sin k ( n ) h ( n ) 

˜ μ( n ) k ( n ) 

− ˜ μ( n ) k ( n ) sin k ( n ) h 

( n ) cos k ( n ) h 

( n ) 

]{
u 

( 1 ) ( x ) 
t ( 1 ) ( x ) 

}
, (4)

where h = 

∑ N 
n =1 h 

( n ) . Since the laminate is periodic and linear, we also have that ( Farzbod et al., 2011; Kittel, 2005 ) {
u 

( N ) ( x + h n ) 
t ( N ) ( x + h n ) 

}
= e ik B h 

{
u 

( 1 ) ( x ) 
t ( 1 ) ( x ) 

}
, (5)

where k B is the Bloch wavenumber, quantifying the envelope of the fields. Eqs. (4 - 5 ) deliver the dispersion relation between

k B , ω and the properties of the layers, namely, 

η = cos k B h, (6)

where 1 

η = 

N ∏ 

n =1 

cos 
ωh 

(n ) 

c (n ) 
−

N−1 ∑ 

m =1 

N ∑ 

n = m +1 

[ 
γ (n,m ) 

( ∏ 

k = m,n 

sin 

ωh 

(k ) 

c (k ) 

) N ∏ 

l( � = m,n )=1 

cos 
ωh 

(l) 

c (l) 

] 
+ 

+ 

N−3 ∑ 

n =1 

N−1 ∑ 

p= n +2 

p−1 ∑ 

m = n +1 

N ∑ 

q = p+1 

[ 
γ (n,m,p,q ) 

( ∏ 

k = m,n,p,q 

sin 

ωh 

(k ) 

c (k ) 

) N ∏ 

l( � = m,n,p,q )=1 

cos 
ωh 

(l) 

c (l) 

] 
+ ..., (7)

and {
γ ( n,m ) = 

1 

2 

(
ρ( n ) c ( n ) 

ρ( m ) c ( m ) 
+ 

ρ( m ) c ( m ) 

ρ( n ) c ( n ) 

)
,γ ( n,m,p,q ) = 

1 

2 

(
ρ( n ) c ( n ) ρ( p ) c ( p ) 

ρ( m ) c ( m ) ρ( q ) c ( q ) 
+ 

ρ( m ) c ( m ) ρ( q ) c ( q ) 

ρ( n ) c ( n ) ρ( p ) c ( p ) 

)
, ... 

}
=: { γ } 

quantifies the mismatch between the impedance of the phases and their combinations. Additional terms are added to

Eq. (7) for N > 5. We emphasize that these terms are of a similar form to the terms in Eq. (7) , namely, products of

cos ωh ( n ) 

c ( n ) 
, sin 

ωh ( n ) 

c ( n ) 
, and impedance mismatch measures ( Shen and Cao, 20 0 0 ). The fact that η maintains this functional

form for arbitrary N is central to our forthcoming analysis in Sec. 3 . 

2.2. Band structure and gap density 

Waves at a frequency ω will propagate in the laminate only if Eq. (6) is satisfied by real k B , and thus | η| < 1. Otherwise,

the Bloch parameter k B is imaginary and | η| > 1, in which case the waves decay. The corresponding frequencies create gaps

between propagating Bloch bands in the k B − ω diagram, resulting in a band structure. It is clear from Eq. (6) that the band

structure depends on the phase properties; it is also clear that the band structure is (generally) not periodic in ω. Two

representative band structures of 3-layer laminates are given in Fig. 2 . Panel (a) corresponds to a laminate whose layer

properties are 

ρ( 1 ) = 2700 kg / m 

3 , μ( 1 ) = 26 GPa , h 

( 1 ) = 3 mm , 

ρ( 2 ) = 80 0 0 kg / m 

3 , μ( 2 ) = 80 GPa , h 

( 2 ) = 2 mm , 

ρ( 3 ) = 50 0 0 kg / m 

3 , μ( 3 ) = 70 GPa , h 

( 3 ) = 1 . 5 mm . 

(8)
1 Interestingly, Kohmoto et al. (1983) found that η equals half the trace of the transfer matrix in Eq. (4) . 
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Fig. 2. Representative band structures of 3-layer laminates. Panels (a) and (b) correspond to laminates (8) and (9) , respectively. The truncated spectra, 

having the range of the gaps highlighted in red, are shown below the panels. The upper and lower spectra correspond to panels (a) and (b), respectively. 

 

 

 

 

 

 

 

 

 

 

The properties of layers 1 and 2 correspond to aluminum and steel, respectively, where layer 3 corresponds to a fictitious

material whose impedance is between the impedance of layers 1 and 2. Panel (b) corresponds to a laminate whose layer

properties are 

ρ( 1 ) = 4050 kg / m 

3 , μ( 1 ) = 39 GPa , h 

( 1 ) = 5 mm , 

ρ( 2 ) = 120 0 0 kg / m 

3 , μ( 2 ) = 120 GPa , h 

( 2 ) = 1 mm , 

ρ( 3 ) = 7500 kg / m 

3 , μ( 3 ) = 105 GPa , h 

( 3 ) = 4 mm . 

(9) 

Note that the diagrams are truncated at ω = 15 M rad / s ; the truncated spectra, having the range of the gaps highlighted in

red, are shown below the panels. The fact that e ik B h = e i ( k B h +2 π l ) for integer l , together with the symmetry of the cosine

function, implies that to identify the gaps it is sufficient to evaluate ω against 0 ≤ k B h ≤π . 

The density of the gaps, denoted ϕ, is their relative size in the frequency spectrum, i.e. , the relative length of the sum of

all red segments. We can define ϕ more formally as follows. Let χ ( ω) denote the characteristic function 

χ( ω ) = 

{
1 ω ∈ gap , 

0 otherwise . 
(10) 

In terms of χ , the relative size of the gaps in a frequency range [0, ω 0 ] is 

ϕ ω 0 = 

1 

ω 0 

∫ ω 0 

0 

χ( ω ) d ω, (11) 

and the gap density is 

ϕ := lim 

ω 0 →∞ 

ϕ ω 0 . (12) 

Only recently, Shmuel and Band (2016) proved that for laminates made of two alternating layers the above limit exists, and

provided a closed-form integral expression for its value, thus were able to calculate the gap density. The case of multilayer

periodic cells is next. 

3. Universal gap structure in a compact manifold 

Shmuel and Band (2016) found that all infinite band structures of two-layer laminates are encapsulated in a compact

universal manifold, independent of the thickness of each layer and its specific physical properties; they further conjectured

that this encapsulation can be generalized to an arbitrary number of layers. In the first part of this Sec., we prove this
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conjecture, derive a closed-form expression for the manifold that encapsulates the gap structure of multiphase laminates,

and in turn, determine the corresponding gap density in terms of the manifold volume. 

Shmuel and Band (2016) further recognized that the compact structure is also useful for formulating optimization prob-

lems on the gaps width, and derived simple bounds for 2-layer laminates. In the second part of this Sec., we generalize their

approach to multiphase laminates. 

3.1. Morphism between spectral band gaps and the N -dimensional torus 

Following the approach in Shmuel and Band (2016) 2 , we begin with the following substitution of variables 

ζ ( n ) := 

ωh 

( n ) 

c ( n ) 
, (13)

which renders η a 2 π-periodic function in each one of the new variables ζ ( n ) , i.e. , 

η
(
ζ ( 1 ) , ζ ( 2 ) , ..., ζ ( n ) + 2 π, ...ζ ( N ) ; { γ } ) = η

(
ζ ( 1 ) , ζ ( 2 ) , ..., ζ ( n ) , ...ζ ( N ) ; { γ } ). (14)

This implies that the domain of η can be represented by an N -dimensional torus whose coordinates are ( ζ (1) , ζ (2) , ..., ζ ( N ) ),

such that each coordinate is defined with modulo 2 π . The torus is equivalent to an N -dimensional cube, whose opposite

sides are identified. In what follows, we interchange between the terms torus and cube, with the understanding that they

are equivalent. The function η linearly depends on sin ζ ( n ) and cos ζ ( n ) , which change sign under the transformation ζ ( n ) →
ζ ( n ) + π, and therefore η changes sign too. It follows that | η| is π-periodic in ζ ( n ) , hence defined over an N -dimensional

torus, or N -cube, whose edges are of length π . Since the existence condition for Bloch waves depends on the absolute

value of η, in what follows we focus on | η| and the π-periodic torus. On this π-periodic torus, denoted T 

N , the equations
d ζ (n ) 

d ω 
= 

h (n ) 

c (n ) define a linear flow 

{ −→ 

ζ
} 

ω∈ R 
in the form 

−→ 

ζ ( ω ) = 

(
h 

( 1 ) 

c ( 1 ) 
, 

h 

( 2 ) 

c ( 2 ) 
, ..., 

h 

( N ) 

c ( N ) 

)
ω mod π. (15)

The flow propagates uniformly in the N -cube as a line; we arbitrarily interpret ζ ( N ) as the flow height, such that its slope

in each one of the coordinates ζ ( n ) is 

a ( 
n ) 

f 
:= 

ζ ( N ) 

ζ ( n ) 
= 

h 

( N ) 

c ( N ) 
c ( n ) 

h 

( n ) 
. (16)

When the flow line reaches a cube face, it continues at the opposite one, owing to their identification. In the supplementary

videos (available online), we present the morphism between the frequency axis in the band structure and the flow evolution

on T 

3 , for two laminates of different microstructure, and identical phased physical properties, given by Eq. (8) . 

If the slopes 

{ 
a ( 

n ) 
f 

} 
are rationally independent, viz. , any set of integers { α( n ) } satisfies 

N ∑ 

n =1 

α( n ) a ( 
n ) 

f 
� = 0 , (17)

except the trivial set α( n ) = 0 , then the flow covers the torus, as depicted by the supplementary videos. Furthermore, it

implies that the linear flow is ergodic, such that a verages over ω in the frequency domain are equivalent to averages over the

torus 3 . We are specifically interested in the gap density ϕ—the average of χ , for which ergodicity implies 

ϕ = 

1 

V 

∫ 
T N 

χ
(−→ 

ζ
)

d V, (18)

where d V = d ζ ( 1 ) d ζ ( 2 ) ... d ζ ( N ) . We recall that χ equals 1 if a certain frequency belongs to a gap, which on the torus trans-

lates to the condition 

∣∣∣η(−→ 

ζ
)∣∣∣ > 1 . In other words, gaps are identified with the intersection of the flow with a subset of the

torus whose image is greater than 1; we denote this subset by D 

N . Hence, the gap density equals to the relative volume of

this subset in the torus , namely, 

ϕ = 

vol D 

N 

vol T 

N 
. (19)

We refer again to the supplementary videos, where D 

3 is depicted in green; since the laminates considered have the same

{ γ }, the gaps of the two flows are derived from the same D 

3 ; since the laminates microstructure is different, their flows

differ in their direction. 
2 This was developed from a method in quantum graphs analysis ( Band and Berkolaiko, 2013; Barra and Gaspard, 20 0 0 ). 
3 For complete details on the corresponding theorems, we refer to the excellent treatise by Katok and Hasselblatt (1996) . 
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Fig. 3. The envelope of D 3 in the (a) 2 π-periodic and (b) π-periodic cubes, of laminates with { γ } = { 1 . 675 , 1 . 34 , 1 . 045 } . Representative flow lines of 

laminates (8) and (27) are depicted in black and purple, respectively. (c) π-periodic envelope of D 3 for laminates with { γ } = { 6 . 76 , 5 . 021 , 1 . 045 } . Part 

of two flows, when phase 1 of laminate (8) is replaced by PMMA given in Eq. (28) , with microstructures as in Eq. (29) , are depicted in black and purple, 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thus, all band structures of all multiphase laminates are encapsulated in a single compact manifold, namely, T 

N ; band

structures of laminates whose number of layers is M < N are the submanifolds T 

M ⊂ T 

N , obtained by setting difference

coordinates to zero. As an example, Fig. 2(b) in Shmuel and Band (2016) is the universal band structure of bilayer laminates,

T 

2 , which is a section of the manifold T 

3 illustrated in the supplementary videos (and Fig. 3 to follow), upon setting ζ ( 3 ) =
0 . 

For bilayer laminates, Shmuel and Band (2016) calculated the gap density, i.e. , the relative volume (area) of D 

2 by deriving

a closed-form expression for its envelope (curve); we provide next a simple procedure to derive a closed-form expression

for the envelope of D 

N for any N, i.e. , when the unit cell comprises an arbitrary number of N layers. The description of these

hypersurfaces—on which 

| η| = 1 , (20) 

requires an expression for ζ ( N ) in terms of 
{
ζ ( 1 ) , ..., ζ ( N−1 ) 

}
. To derive such expression, we define the variables 

y n := tan 

ζ ( n ) 

2 

, (21) 

and observe that in terms of { y n }, the harmonic functions comprising | η| are cos ζ ( n ) = 

1 −y 2 n 

1+ y 2 n 
and sin ζ ( n ) = 

2 y n 
1+ y 2 n 

. We multiply

Eq. (20) by 1 + y 2 
N 
, to obtain a quadratic equation for y N , whose constants are combinations of { γ } and ( y 1 , ..., y N−1 ) . Finally,

by inverting Eq. (21) for n = N and substituting the solution for y N , we achieve a closed-form expression for ζ ( N ) . Accordingly

for η = −1 , we have that 

ζ ( N ) = 2 arctan 

−a 1 ±
√ 

a 2 
1 

− 4 a 2 a 0 

2 a 2 
, (22) 

whose constants are 

a 0 = 1 , a 1 = −2 γ ( 1 , 2 ) tan 

ζ ( 1 ) 

2 

, a 2 = tan 

2 ζ
( 1 ) 

2 

, (23) 

when N = 2 ; when N = 3 , the constants are 

a 0 = tan 

2 ζ ( 1 ) 

2 
tan 

2 ζ ( 2 ) 

2 
− 2 γ ( 1 , 2 ) tan 

ζ ( 1 ) 

2 
tan 

ζ ( 2 ) 

2 
+ 1 , 

a 1 = 2 γ ( 1 , 3 ) tan 

ζ ( 1 ) 

2 

(
tan 

2 ζ ( 2 ) 

2 
− 1 

)
+ 2 γ ( 2 , 3 ) tan 

ζ ( 2 ) 

2 

(
tan 

2 ζ ( 1 ) 

2 
− 1 

)
, 

a 2 = tan 

2 ζ ( 1 ) 

2 
+ tan 

2 ζ ( 2 ) 

2 
+ 2 γ ( 1 , 2 ) tan 

ζ ( 1 ) 

2 
tan 

ζ ( 2 ) 

2 
, 

(24) 

and so on, for any N . 

We conclude this part with remarks on laminates whose slopes 

{ 
a ( 

n ) 
f 

} 
are not rationally independent. The set of such

laminates constitutes a subset with measure zero on the set of all possible laminates, since there are uncountably many

rationally independent sets 

{ 
a ( 

n ) 
f 

} 
, and countably many rationally dependent sets 

{ 
a ( 

n ) 
f 

} 
. Therefore, this is a negligible set

which corresponds to an irregular case, contrary to the generic case analyzed above, when the flow uniformly covers the

whole torus. The only case in which the band diagram is periodic, and therefore also the orbit of the flow, is when all the

slopes are rational numbers. Clearly, in this case the gap density is different than (19) , and equals the relative length of the
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flow intersection with D 

N over the length of one orbit. When N = 2 , the flow is either periodic or ergodic; when N > 2, there

exists the following additional scenario. Say only a ( 
m ) 

f 
is rational and the remaining slopes are rationally independent. Then,

the flow remains only on hyperplanes in the cube that are defined by ζ ( N ) = ζ ( m ) a ( 
m ) 

f 
, and covers uniformly only these

hyperplanes. Similarly, if another slope is also rational, say a ( 
l ) 

f 
, then the flow remains on the intersection of hyperplanes

defined by ζ ( N ) = ζ ( m ) a ( 
m ) 

f 
and ζ ( N ) = ζ ( l ) a ( 

l ) 
f 

, covering it uniformly. This reduction of the flow orbit continues if additional

slopes are rational, until the periodic case is obtained when all the slopes are rational numbers. 

3.2. Gap width analysis on T 

N 

Potential applications such as noise filters and vibration isolators require wide gaps; topology optimization aims at tai-

loring the medium microstructure to this objective ( Bilal et al., 2011; Bortot et al., 2018; Sigmund and Jensen, 2003 ). In this

Sec., we employ our framework to formulate in a simple way these optimization problems on the compact manifold D 

N ,

and as a byproduct, derive a simple bound on the gaps width. 

Our starting point is the identification of the gaps width on T 

N . Say the flow enters D 

N at 
−→ 

ζ ( ω l ) = 

(
h ( 1 ) 

c ( 1 ) 
, h 

( 2 ) 

c ( 2 ) 
, ..., h 

( N ) 

c ( N ) 

)
ω l ,

and exits at 
−→ 

ζ ( ω u ) = 

(
h ( 1 ) 

c ( 1 ) 
, h 

( 2 ) 

c ( 2 ) 
, ..., h 

( N ) 

c ( N ) 

)
ω u . The distance between the two coordinates over the torus is 

�ζ := 

∣∣∣−→ 

ζ ( ω u ) −
−→ 

ζ ( ω l ) 

∣∣∣ = �ω 

√ 

N ∑ 

n =1 

h 

( n ) 
2 

c ( n ) 
2 
, (25)

where �ω := ω u − ω l is the gap width. (See Fig. 3 (b) for an exemplary �ζ segment of D 

3 .) It follows that maximizing

over an admissible set of unit cell compositions, denoted S 
(
h ( n ) , c ( n ) 

)
, is equivalent to maximizing �ζ

(∑ N 
n =1 

h ( n ) 
2 

c ( n ) 
2 

)− 1 
2 

over

its corresponding admissible set. The merit in the expression that contains �ζ is threefold. ( i ) It is formulated over the

torus, hence encapsulates the whole spectra. ( ii ) Since we derived a closed-form expression for ζ ( N ) in Eq. (15) , at times a

closed-form expression for �ζ is accessible too. ( iii ) Eq. (25) lends itself for the basis of the following simple bound 

max 
S ( h ( n ) ,c ( n ) ) 

�ω = max 
S 
(

a ( 
n ) 

f 
, 
−→ 

b 

)
⎧ ⎨ 

⎩ 

�ζ

( 

N ∑ 

n =1 

h 

( n ) 
2 

c ( n ) 
2 

) − 1 
2 

⎫ ⎬ 

⎭ 

≤ max 
S 
(

a ( 
n ) 

f 
, 
−→ 

b 

) { �ζ } max 
S ( h ( n ) ,c ( n ) ) 

⎧ ⎨ 

⎩ 

( 

N ∑ 

n =1 

h 

( n ) 
2 

c ( n ) 
2 

) − 1 
2 

⎫ ⎬ 

⎭ 

, (26)

where S 
(

a ( 
n ) 

f 
, 
−→ 

b 

)
is the corresponding set of admissible slops a ( 

n ) 
f 

and intersection points 
−→ 

b with the cube faces that

characterize the linear flow lines. ( Fig. 3 (b) depicts such exemplary point 
−→ 

b = ( 0 , 2 , 1 . 3 ) in T 

3 .) In the sequel ( Sec. 4.2 ), this

analysis will be made more concrete via a specific optimization problem. 

4. Parametric investigation on T 

N 

4.1. Gap density analysis 

3-layer laminates . We begin with an analysis of 3-layer laminates, whose torus dimensionality enables its illustration.

Fig. 3 (a) shows the envelope of D 

3 in the 2 π-cube of laminates with { γ } := { γ ( 1 , 2 ) , γ ( 1 , 3 ) , γ ( 2 , 3 ) } = { 1 . 675 , 1 . 34 , 1 . 045 } ,
e.g. , laminate (8) . Indeed, the structure is π-periodic, and the reduced π-periodic cube is depicted in Fig. 3 (b). Therein, we

also plot in black a part of the flow that corresponds to laminate (8) . For comparison, a partial flow of a laminate with the

same constituents, however with different thicknesses, namely, 

h 

( 1 ) = 1 mm , h 

( 2 ) = 2 mm , h 

( 3 ) = 3 . 5 mm , (27)

is depicted in purple. 

We illustrate the effect { γ } has on the domain of D 

3 by replacing the first constituent of laminate (8) with PMMA, whose

physical properties are 

ρ( 1 ) = 1180 kg / m 

3 , μ( 1 ) = 3 GPa , (28)

and evaluating the resultant envelope in Fig. 3 (c), which corresponds to { γ } = { 6 . 76 , 5 . 021 , 1 . 045 } . Parts of two represen-

tative flows, associated with the microstructures 

h 

( 1 ) = 3 mm , h 

( 2 ) = 2 mm , h 

( 3 ) = 1 . 5 mm , 

h 

( 1 ) = 1 mm , h 

( 2 ) = 2 mm , h 

( 3 ) = 7 . 5 mm , 
(29)

are depicted in black and purple, respectively. 

Fig. 4 compares the calculation of the gap density via Eq. (19) on T 

3 (black line), with sequences ϕ ω 0 , calculated directly

from the original band structure at increasing values of ω . Specifically, we calculate the sequence for laminates (8) and (27) ,
0 
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Fig. 4. The gap density of laminates (8), (9) and (27) , calculated on T 3 (black line), and corresponding sequences ϕ ω 0 , calculated directly from the original 

band structure (red and blue and green marks, respectively). 

Fig. 5. (a) Normalized gap density ˆ ϕ (continuous curves) and ˆ γ̄ (dashed curves) as functions of phase 3 normalized impedance. Black curves correspond 

to a laminate whose phases 1 and 2 impedance is as in (8) . Red curves correspond to a laminate whose phase 1 (resp. 2) impedance is 2/3 (resp. 3/2) the 

impedance of phase 1 (resp. 2) in (8) . (b) Normalized gap density as function of ˆ γ̄ . 

 

 

 

 

 

and denote its values at discrete ω 0 by the red and blue marks, respectively. A third sequence (green marks) corresponds to

laminate (9) whose properties are different from laminates (8) and (27) , yet yield the same { γ }. Indeed, the sequences ϕ ω 0 

converge to vol D 3 

vol T 3 
, as our theory predicts. 

The result that the gap density for classes of { γ } is universal and computable via Eq. (18) is exploited next to investigate

if we can increase the gap density of laminates of two alternating layers by introducing a third phase. To this end, in Fig. 5

we carry out a parametric investigation of the relation between the gap density, { γ } and the impedance of the third phase,

for a laminate whose phases 1 and 2 are as of laminate (8) . Panel 5 (a) shows the gap density (continuous black curves) and

γ̄ = 

γ ( 1 , 2 ) + γ ( 1 , 3 ) + γ ( 2 , 3 ) 

3 (dashed black curves) as functions of phase 3 impedance, normalized according to 

ˆ z ( 3 ) := 

z ( 3 ) −z ( 1 ) 

z ( 2 ) −z ( 1 ) 
, 

ˆ ϕ := 0 . 5 

ϕ 
ϕ(z ( 3 ) = z ( 1 ) ) , 

ˆ γ̄ := 1 . 5 

γ̄
γ̄ (z ( 3 ) = z ( 1 ) ) . 

(30) 
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Fig. 6. (a) Gap density as function of layers 3 and 4 impedance. Layers 1 and 2 impedance is as in (8) 1, 2 . The units of the z ( 3 ) and z ( 4 ) axes are M kg m 

−2 s −1 

(b) The ϕ ω 0 sequences of two lamintes made of phases (8) 1, 2 , where one is 2-layer laminate (red marks) with microstructure (32) , and the other is a 4- 

layer laminate (blue marks) with microstructure (33) . Corresponding values of the gap density calculated over T 2 and T 4 , respectively, are given by black 

lines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We observe that γ̄ is smaller than its value for the bilayer laminate if the impedance of phase 3 is between the impedances

of phases 1 and 2, and the value of the gap density is lower too. Conversely, if the impedance of phase 3 is greater (resp.

lower) the the impedance of the phase 2 (resp. 1), the gap density is higher (not shown in the figure). We find that this

trend is independent of the specific values of the impedance of phases 1 and 2. For example, we consider a laminate whose

phase 1 (resp. 2) impedance is 2/3 (resp. 3/2) the impedance of phase 1 (resp. 2) in laminate (8) . Its normalized gap density

ˆ ϕ (red continuous curves) and 

ˆ γ̄ (red dashed curves) as functions of phase 3 impedance demonstrate the same trend. A

different representation of this dependency is given in Fig. 5 (b), in which the gap density is depicted versus ˆ γ̄ . Indeed, we

observe that the gap density is a monotonically increasing function of ˆ γ̄ . We conclude that when subjected to the constraint

z ( 1 ) < z ( 3 ) < z ( 2 ) , (31)

the gap density of 3-layer laminates cannot exceed the gap density of 2-layer laminates. 

Laminates with 4 layers and more. Fig. 6 (a) illustrates the gap density as function of layers 3 and 4 impedance, when

layers 1 and 2 impedance is as in (8) 1, 2 . As reference, the gap density of 2-layer laminates with the same γ (1, 2) is repre-

sented by the green plane ϕ = 0 . 42 . A comparison with laminates whose unit cell comprises 3 layers shows two significant

differences. ( i ) Here, the set { γ } depends on the ordering of the phases, while for 3-layer laminates it does not. Specifically,

γ (1, 2, 3, 4) quantifies impedance mismatch of layers 1 and 3 versus layers 2 and 4. It follows that interchanging layers, except

layers 1 and 3 or 2 and 4, changes γ (1, 2, 3, 4) and, in turn, the gap density. Therefore, the bullet marked exemplary points

(10.07, 20.22) and (20.22, 10.07) in Fig. 6 have different gap density. ( ii ) While the gap density of 2-layer laminates cannot

be improved by introducing a third layer if z (1) < z (3) < z (2) , it can be improved by introducing a fourth layer, even when

z (1) < ( z (3) , z (4) ) < z (2) . Interestingly, the optimal composition is when layers 3 and 4 are made of the phases that comprise

layers 1 and 2, respectively, as it yields the greatest γ (1, 2, 3, 4) ; of course, the thickness of layers 3 and 4 must be different

than layers 1 and 2 ( e.g. , the right laminate in Fig. 1 ), and satisfy Eq. (17) . This is demonstrated in Fig. 6 (b) by evaluating

two ϕ ω 0 sequences, associated with two laminates made of phases (8) 1, 2 , where one laminate is composed of 2 layers (red

marks) with 

h 

( 1 ) = 3 mm , h 

( 2 ) = 2 mm , (32)

and the other is composed of 4 layers (blue marks), with 

h 

( 1 ) = 1 . 3 mm , h 

( 2 ) = 1 . 3 mm , h 

( 3 ) = 1 . 7 mm , h 

( 4 ) = 1 . 7 mm . (33)

The corresponding calculations of the gap densities over T 

2 and T 

4 , respectively, are given by the black lines. Indeed, we

observe that the sequences converge to the theoretical values, and that the gap density of the 4-layer laminate is higher

than the density of the 2-layer laminate. 

Assuming the laminate is subjected to a constraint on the impedance range of available phases, our analysis suggests that

the optimal scheme to increase the gap density is by adding pairs of layers made of the same two phases that constitute

the 2-layer laminate, and varying their thickness. We illustrate this in Fig. 7 , where the gap density is plotted against the

number of layers in a laminate made of phases 1 and 2 as in (8) 1, 2 . As reference, the 2-layer case is also shown in red line.

For comparison, the gap density of a 2-layer laminate whose phase 1 (resp. 2) impedance is 2/3 (resp. 3/2) the impedance

of phase 1 (resp. 2) in (8) is shown in dashed line. 
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Fig. 7. Gap density as function of the number of layers in a laminate made of phases 1 and 2 as in (8) , where the two-layer gap density is shown also 

by the red solid line. The dashed line corresponds to a two-layer laminate whose phase 1 (resp. 2) impedance is 3/2 (resp. 2/3) the impedance of phase 1 

(resp. 2) in (8) . 

 

 

 

 

 

 

 

 

 

 

4.2. Maximization of the 1 st gap 

We apply next the general formulation in Sec. 3.2 to the address the following question. Consider two phases and the

2-layer microstructure that maximizes the 1 st gap at a prescribed unit cell thickness h ; can the 1 st gap be widened by in-

troducing a third layer made of a phase whose impedance is constrained between the impedances of the other two phases?

To answer the question, we first analyze the 2-layer case. The 1 st gap corresponds to the segment originating at 
−→ 

b = 

−→ 

0 .

Since the phase properties and h are prescribed, the only optimization variable is the thickness of one of the layers, say

layer 1. Over the torus, this translates to optimization over the possible slopes a ( 
1 ) 

f 
. Using the expression for D 

2 and its

properties, we find that 

max 
a ( 

1 ) 
f 

�ζ = �ζ
(
a ( 

1 ) 
f 

= 1 

)
= 2 

√ 

2 arctan 

√ 

γ + 

√ 

γ 2 − 1 −
√ 

γ −
√ 

γ 2 − 1 

2 

, (34) 

where γ = γ ( 1 , 2 ) . The second part of the bound also admits an analytic solution, namely, 

max 
0 <h ( 1 ) <h 

( 

h 

( 1 ) 
2 

c ( 1 ) 
2 

+ 

(
h − h 

( 1 ) 
)2 

c ( 2 ) 
2 

) − 1 
2 

= 

√ 

c ( 1 ) 
2 + c ( 2 ) 

2 

h 

(35) 

at h ( 1 ) = 

c ( 1 ) 
2 

c ( 1 ) 
2 + c ( 2 ) 2 

h, or in terms of the slope, at a ( 
1 ) 

f 
= 

c ( 2 ) 

c ( 1 ) 
, implying that the bound is sharp when the layers have the

same phase velocity. 

We analyze next the 3-layer case. We start with the second part of the bound. Given a third phase characterized by c (3) ,

the analytic solution reads 

max 
h ( 1 ) ,h ( 2 ) 

s . t . 0 <h ( 1 ) + h ( 2 ) <h 

( 

h 

( 1 ) 
2 

c ( 1 ) 
2 

+ 

h 

( 2 ) 
2 

c ( 2 ) 
2 

+ 

(
h − h 

( 1 ) − h 

( 2 ) 
)2 

c ( 3 ) 
2 

) − 1 
2 

= 

√ 

c ( 1 ) 
2 + c ( 2 ) 

2 + c ( 3 ) 
2 

h 

(36) 

at h ( 1 ) = 

c ( 1 ) 
2 

c ( 1 ) 
2 + c ( 2 ) 2 + c ( 3 ) 2 

h and h ( 2 ) = 

c ( 2 ) 
2 

c ( 1 ) 
2 + c ( 2 ) 2 + c ( 3 ) 2 

h, or in terms of the slopes, at a ( 
1 ) 

f 
= 

c ( 3 ) 

c ( 1 ) 
and a ( 

1 ) 
f 

= 

c ( 3 ) 

c ( 2 ) 
. If the velocity

c (3) is also a variable, the maximum is achieved at the greatest admissible c (3) . We have employed a numerical analysis of
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Fig. 8. (a) 1 st gap width as function of φ (continuous blue curve), when phase 1 is (28) , phase 2 is (8) 2 , and h = 11 . 5 mm . Our bound is depicted by the 

dashed red line. (b) 1 st gap width (blue surface) as function of the possible microstructures of a 3-layer in terms of φ and θ , whose phase properties are 

(28), (8) 2 , and (38) . Our bound is depicted by the red plane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D 

3 to find that max �ζ is along the diagonal of the face associated with the greatest γ ( n, m ) , namely, 

max �ζ = 2 

√ 

2 max 
n,m 

⎧ ⎨ 

⎩ 

arctan 

√ 

γ ( n,m ) + 

√ 

γ ( n,m ) 
2 − 1 −

√ 

γ ( n,m ) −
√ 

γ ( n,m ) 
2 − 1 

2 

⎫ ⎬ 

⎭ 

. (37)

We evaluate next the above results in the following numerical example. We set the properties of phase 1 to Eq. (28) ,

phase 2 to Eq. (8) 2 , and the unit cell thickness to 11.5 mm. For these parameters, Eqs. (26) , (34) and (35) provide the

bound 0 . 9 04M 

rad 
s . Fig. 8 (a) compares this bound (dashed red line) with the width as function of the polar angle φ, where

tan φ = a ( 
1 ) 

f 
(continuous blue curve). The optimal value, namely, 0 . 867M 

rad 
s at φ = 48 ◦, found to be very close to the bound.

Consider a third phase whose properties are 

ρ( 3 ) = 3500 kg / m 

3 μ( 3 ) = 55 GPa , (38)

such that its impedance is between the impedances of phases 1 and 2. Eqs. (26) , (36) and (37) yield the bound 1 . 35 rad 
s on

the 1 st gap width when a third layer made of the latter phase is added. Fig. 8 (b) compares this bound (red plane) with the

width (blue surface) as function of the possible microstructures of the 3-layer in terms of φ and θ , where tan φ = 

a 
( 1 ) 
f 

a 
( 2 ) 
f 

and

tan θ = 

√ (
1 /a ( 

1 ) 
f 

)2 

+ 

(
1 /a ( 

2 ) 
f 

)2 

. The maximal width observed is 0 . 93M 

rad 
s ; indeed, as the change in the bound suggests,

the 1 st gap can be widened by introducing a third layer, even when its impedance is subjected to constraint (31) . 

5. Small-amplitude waves in finitely deformed multiphase laminates 

Constitutively non-linear materials undergoing reversible large deformations attract growing attention, since they can

comply with varying functional needs by virtue of their tunable geometrical and physical properties. Clearly, such materials

can be useful when it is desirable to obtain tunable band diagrams, e.g. , when the frequencies needed filtering are changing

( Barnwell et al., 2017; Bertoldi and Boyce, 2008; Ganesh and Gonella, 2017; Getz et al., 2017b; Wang and Bertoldi, 2012 ). The

scheme for such tunability via finitely deformable multiphase laminates is simple, and we start with its informal description.

The tuning mechanism is based upon an application of a finite quasi-static deformation, say, by an axial force, which results

in a change of the thickness of each layer, and generally, its mass density ( Fig. 9 ). The constitutive behavior of the phases

is non-linear, thus their instantaneous stiffness changes too. The propagation of small-amplitude waves depends on the

above quantities, which are rendered tunable by the finite deformation; in turn, the band structure is rendered tunable too

( Shmuel and deBotton, 2012 ). 

Shmuel and Band (2016) employed the theory of incremental deformations superposed on large deformations ( Destrade,

2007; Ogden, 1997 ) to show that the dispersion relation of finitely deformed laminates made of two alternating layers is

of the same functional form of Eq. (6) for N = 2 . Shmuel and Band (2016) further showed that the torus representation is

applicable in this case too, and employed the compactness and universality of the torus to concisely characterize the tun-

ability. For example, by analyzing 
−→ 

ζ and D 

2 dependency on the deformation, they deduced that shear gaps become higher

and wider in strained Gentian bilayers. Galich et al. (2017, 2017b) later repeated the foregoing derivation of the dispersion

relation, and by tedious evaluation of numerous spectra—the above conclusions, following Shmuel and Band (2016) . Next,

we compactly describe the extension of the dispersion relation and torus analysis to finitely deformed multiphase laminates.

Consider again the laminate in Sec. 2 , only now the unit cell comprises N non-linear phases, whose stress is derived from

functions �( n ) ( F ) of the finite deformation gradient F via 

σ( n ) = 

1 ∂�( n ) 

F T . (39)

det F ∂F 
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Fig. 9. A non-linear soft multiphase laminate in its (a) undeformed configuration; (b) deformed configuration, due to an axial force of density t ; (c) 

incremental configuration, when impinged by small-amplitude waves. The axial force changes the thickness and instantaneous properties of the layers, and 

in turn the band structure changes too, owing to its dependency on these parameters. 

 

 

 

 

 

 

 

 

 

 

 

In addition to the usual physical requirements on { �( n ) }, we require symmetry with respect to the lamination direction n =
e 1 , but otherwise �( n ) are of general form. The laminate is quasi-statically deformed by applying an axial force of density

t A per undeformed unit area. To determine the resultant deformation, the equations of continuity, far field conditions and

equilibrium are to be satisfied. To this end, we postulate a piecewise homogeneous deformation, such that the deformation

gradient matrix in layer n is 

F ( n ) = diag 
[
λ( n ) 

1 
, λ( n ) 

2 
, λ( n ) 

3 

]
, (40) 

namely, unit cubes comprising layer n are deformed to λ( n ) 
1 

× λ( n ) 
2 

× λ( n ) 
3 

cuboids. The outstanding quasi-static problem to

determine 

{ 
λ( n ) 

1 
, λ( n ) 

2 
, λ( n ) 

3 

} 
is addressed as follows. Firstly, the in-plane stretches in the different layers must match for the

displacement field to be continuous across the interfaces, hence 

λ( 1 ) 
2 

= λ( 2 ) 
2 

= ... = λ( N ) 
2 

=: λ2 , λ
( 1 ) 
3 

= λ( 2 ) 
3 

= ... = λ( N ) 
3 

=: λ3 . (41) 

The problem symmetry in the plane implies that 

λ2 = λ3 =: λip , (42) 

and equilibrium determines the remaining relations. Specifically, it leads to a constant axial stress throughout the laminate

σ ( 1 ) 
11 

= σ ( 2 ) 
11 

= ... = σ ( N ) 
11 

= 

t A 

λ2 
ip 

. (43) 

Since the only force applied is axial, the remaining equation that completes the set of N + 1 equations for the stretches{ 
λ( n ) 

1 

} 
and λip is 

N ∑ 

n =1 

λ( n ) 
1 

H 

( n ) σ ( n ) 
22 

= 0 , (44) 

where H 

( n ) is the thickness of layer n before the deformation. Note that for incompressible phases, the stretches are con-

strained via λ2 
ip 
λ( n ) 

1 
= 1 , and a hydrostatic Lagrange multiplier is added to the stress. This completes the calculation of the

laminate state in the deformed configuration. 

To analyze small-amplitude wave propagation in the deformed laminate, a linearization is carried out about the deformed

configuration. In each layer, we obtain a wave equation for the displacements u 

( n ) ( x , t ) from the deformed state, namely, 

∇ ·
(
C ( n ) ∇u 

( n ) 
)

= ρ( n ) ü 

( n ) , (45) 

where the instantaneous elasticities are 

C ( n ) 
i jkl 

= 

1 

det F ( n ) 
F ( 

n ) 
jα

∂ 2 �( n ) 

∂ F iα∂ F kβ
F ( 

n ) 
lβ

. (46) 
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Note that the current mass densities { ρ( n ) } depend on the finite deformation via ρ( n ) = ρ( n ) 
0 

/ det F ( n ) , where ρ( n ) 
0 

is the

initial mass density of phase n . It follows that Eq. (45) admits solutions in the form of Eq. (1) , and the resultant continuity

and Bloch-Floquet conditions reproduce Eq. (6) , only now { h ( n ) , c ( n ) , ρ( n ) } are functions of t A . Since η maintains its functional

form, the arguments in Sec. (3) hold, hence the band structure of small-amplitude waves in finitely deformed multiphase

laminates is also a linear flow on T 

N . The universality of the torus representation offers a convenient platform to analyze

how the finite deformation affects the band structure, and replaces the need to carry out numerous evaluations of band

structures at different deformations. This is demonstrated next, by way of examples. 

To avoid cumbersome calculations, we focus on anti-plane shear waves, for which Eq. (45) simplifies to 

C ( n ) 
2121 

u 

( n ) 
2 , 11 

= ρ( n ) ü 

( n ) 
2 

. (47)

The resultant coordinates on the torus are 

ζ ( n ) = 

ωh 

( n ) 

c ( n ) 
= 

ωλ( n ) 
1 

H 

( n ) √ 

ˆ C ( n ) 
2121 

/ρ( n ) 
0 

, 
(

ˆ C ( n ) 
2121 

= det F ( n ) C ( n ) 
2121 

)
(48)

with the slopes 

a ( 
n ) 

f 
= 

ζ ( N ) 

ζ ( n ) 
= 

h 

( N ) 

c ( N ) 
c ( n ) 

h 

( n ) 
= 

λ( N ) 
1 

H 

( N ) 

λ( n ) 
1 

H 

( n ) 

√ 

ˆ C ( n ) 
2121 

ρ( N ) 
0 

ˆ C ( N ) 
2121 

ρ( n ) 
0 

, (49)

and the impedance contrasts that determine { γ } are 

z ( m ) 

z ( n ) 
= 

ρ( m ) c ( m ) 

ρ( n ) c ( n ) 
= 

λ( n ) 
1 

λ( m ) 
1 

√ 

ˆ C ( m ) 
2121 

ρ( m ) 
0 

ˆ C ( n ) 
2121 

ρ( n ) 
0 

. (50)

To continue, the form of { �( n ) } is needed. Assuming incompressible Gent phases ( Gent, 1996 ), the finite deformation is

homogeneous such that λ( n ) 
1 

= λ−2 
ip 

, and the instantaneous shear moduli are 

ˆ C ( n ) 
2121 

= 

λ−4 
ip 

μ( n ) 

1 − λ−4 
ip 

+2 λ2 
ip 

−3 

J ( 
p ) 

m 

; (51)

here, μ( n ) is the shear modulus of phase n in the limit of small strains, and J ( 
n ) 

m 

∈ (0 , ∞ ] is a locking constant that models

the stiffening of the material at finite strains. We now can demonstrate how the tunability affects the flow and D 

N in T 

N ,

depending on the relations between the constants 

{ 
μ( n ) , J ( 

n ) 
m 

} 
, through the following two representative cases. 

• Case 1: J ( 
1 ) 

m 

= J ( 
2 ) 

m 

= ... = J ( 
N ) 

m 

=: J m 

. Under this condition, the slopes 

{ 
a ( 

n ) 
f 

} 
are independent of the deformation, regardless

of the relations between the shear moduli and mass densities. The impedance contrasts do not change either, hence D 

N

and ϕ are invariant of the deformation. A change is identified in the flow rate d 
−→ 

ζ
d ω 

, which now multiplies the factor√ 

1 − λ−4 
ip 

+2 λ2 
ip 

−3 

J m 
, and therefore the frequencies of each gap are divided by that factor. Since this factor is smaller than

1 and approaches 0 as the deformation becomes larger, the gaps are widened and shifted towards higher frequencies.

Note that the limit J m 

→ ∞ corresponds to neo-Hookean phases 4 , whose analysis follows as a particular case, in which

the flow rate does not change either. 

• Case 2: J ( 
1 ) 

m 

� = J ( 
2 ) 

m 

� = ... � = J ( 
N ) 

m 

. Contrarily to the previous case, the layers stiffen at different rates. In turn, the slopes and

impedance contrasts change in a way that depends on the relation between the different phase constants. There are

numerous classes of relations between the constants; exploring them is outside our scope, however we provide an ex-

ample for which the insights gained in Sec. 4 characterize certain aspects of the tunability. Our example considers 3-layer

laminates, whose phase constants satisfy 

μ( 1 ) = μ( 3 ) < μ( 2 ) , J ( 
3 ) 

m 

< J ( 
1 ) 

m 

= J ( 
2 ) 

m 

, (52)

where, for simplicity, their mass density is equal. In the undeformed state, the band structure is identical to the band

structure of a 2-layer laminate, encapsulated in T 

2 with γ = γ ( 1 , 2 ) . Since J ( 
3 ) 

m 

< J ( 
1 ) 

m 

, the instantaneous stiffness and

(consequently) impedance of layer 3 exceeds that of layer 1 upon deformation; up to a critical deformation, the resul-

tant instantaneous impedances satisfy relation (31) , with max n, m 

γ ( n, m ) fixed, and equal to γ (1, 2) . The band structure is
4 Note that the shear impedance contrasts between neo-Hookean phases do not change even when the phases are compressible. In this case we may 

have λ( n ) 
1 

� = λ( m ) 
1 

for n � = m such that the contrast between the velocities does change, however this change is cancelled out in the calculation of { γ } by the 

change of the mass density. This comment corrects our error in Shmuel and Band (2016) , where we overlooked this cancellation. 
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Fig. 10. Gap density as function of the pre-deformation parameter λip , for the sets of materials (54) and (55) , depicted in blue and orange curves, respec- 

tively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

described on T 

3 , and our torus analysis in Sec. 4.1 shows that at fixed max n, m 

γ ( n, m ) , the gap density in T 

3 is always

lower than in T 

2 of the same γ . Thus, we deduce that the effect deformation has on the band structure is, on average,

to narrow the gaps relatively to the undeformed state. At the critical deformation in which the strains are large enough

to satisfy 

λ−4 
ip 

+ 2 λ2 
ip 

− 3 − J ( 
3 ) 

m 

λ−4 
ip 

+ 2 λ2 
ip 

− 3 − J ( 
2 ) 

m 

J ( 
2 ) 

m 

J ( 
3 ) 

m 

= 

μ( 3 ) 

μ( 2 ) 
, (53) 

we have that γ ( 1 , 3 ) = γ ( 1 , 2 ) , hence the band structure is of a 2-layer laminate whose gap density equals the gap den-

sity of the undeformed laminate. Beyond this loading point, the instantaneous maximal impedance mismatch becomes

greater than at lower strains. Our torus analysis in Sec. 4.1 indicates that, in turn, the resultant gap density is greater

than the gap density at the undeformed state. 

We conclude this Sec. with a numerical calculation demonstrating the latter result, considering 3-layer laminates whose

properties are characteristic properties of elastomers (see, e.g., Getz et al., 2017a , and the references therein). Specifically,

the two laminates considered are given by 

ρ( 1 ) = ρ( 2 ) = ρ( 3 ) = 10 0 0 kg / m 

3 , μ( 1 ) = μ( 3 ) = 500 , μ( 2 ) = 5500 kPa , 

J ( 
1 ) 

m 

= J ( 
2 ) 

m 

= 35 , J ( 
3 ) 

m 

= 8 , 
(54) 

and 

ρ( 1 ) = ρ( 2 ) = ρ( 3 ) = 10 0 0 kg / m 

3 , μ( 1 ) = μ( 3 ) = 650 , μ( 2 ) = 6100 kPa , 

J ( 
1 ) 

m 

= J ( 
2 ) 

m 

= 40 , J ( 
3 ) 

m 

= 12 . 
(55) 

The gap density of laminates (54) and (55) as function of the pre-deformation parameter λip is depicted Fig. 10 by the blue

and orange curves, respectively. Indeed, as our analysis implied, when the layers satisfy Eq. (52) , pre-deformations reduce

the gap density in comparison with the gap density of the undeformed laminates. At the critical deformation λip = 0 . 565 ,

the instantaneous moduli of layers 2 and 3 in laminate (54) are equal, namely, ˆ C ( 2 ) 
2121 

= 

ˆ C ( 3 ) 
2121 

= 68 . 3 MPa . Accordingly, at this

deformation the gap density equals the gap density of the undeformed laminate, as indicated by the red dot in the plot.

The maximal impedance mismatch beyond this point exceeds its counterpart at λip = 1 , hence the gap density is greater

than in the reference configuration. Laminate (55) undergoes a similar process, with the critical deformation λip = 0 . 521 , at

which 

ˆ C ( 2 ) 
2121 

= 

ˆ C ( 3 ) 
2121 

= 114 . 1 MPa . 
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6. Summary 

We have shown that the infinite band diagrams of waves at normal incident angle to N -phase laminates are encapsu-

lated in a universal compact manifold, namely, T 

N , independently of the specific properties of the layers. The frequency

parametrizes a linear flow over T 

N , whose intersection with the submanifold D 

N is identified with gaps in the band dia-

grams. Using ergodicity arguments, we proved that the gap density of N -phase laminates is a well-defined quantity, universal

for classes of laminates, and equals vol D N 

vol T N 
. This result was supplemented with numerical examples, demonstrating that the

calculation of the gap density in the original band structures, truncated at increasing frequencies for different multiphase

laminates, converges to the relative volume of D 

N . 

We have employed our theory in a numerical study on the relation between the gap density, number of layers, and

their impedance. Interestingly, we found that the gap density of two-layer laminates is increased by adding to the unit cell

pairs of layers made of the same phases at different thicknesses. We have also showed that the encapsulation of the band

diagrams in T 

N is useful for formulating optimization problems on the gaps width, and developed a simple bound. By way

of example, we addressed the question: can we enlarge the 1 st gap of the optimal two-layer laminate by adding phases to

the unit cell, even when the impedance of the added phases is constrained between the impedance of the original laminate

phases? To this end, we have analytically calculated the bound for two-layer laminates, finding it is sharp. We have semi-

analytically calculated the bound for the constrained 3-layer laminate, and found it is higher than the bound in the two-

layer case, suggesting that the answer is yes. We have further evaluated the gap width as function of the microstructure for

exemplary phases, using its expression over the torus in the two cases. Indeed, this evaluation confirmed that the optimal

microstructure in the 3-layer case yields a wider 1 st gap than the optimal microstructure in the two-layer case. 

Finally, we have analyzed laminates comprising an arbitrary number of non-linear finitely deformed phases. We have

showed that if such laminates undergo finite piecewise-constant deformations, the dispersion relation of superposed small-

amplitude waves is similar to the dispersion relation of linear laminates, where the phase moduli and thickness become

functions of the finite deformation. Hence, our theory and analysis of linear laminates extend to non-linear laminates under

the foregoing settings. In addition, we have demonstrated how our framework facilitates the characterization of the band

diagram tunability by static finite deformations. 

We conclude this paper noting that our theory applies for additional multiphase systems, other than elastic laminates,

whose dispersion relation is functionally similar to Eq. (6) , e.g. , certain electroelastic systems ( Qian et al., 2004; Shmuel and

deBotton, 2012 ) and stratified photonic crystals ( Shmuel and Band, In preparation ), owing to the similarly with the problem

of electromagnetic waves ( Adams et al., 2008; Lekner, 1994 ). 
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Appendix 

Added in proof: we can further characterize the statistical properties of the gap width, via its expected value and vari-

ance. Specifically, the expected value is 

c ( 
n ) 

/ h 

( n ) √ 

1 + 

∑ n −1 
i =1 

(
1 /a (i ) 

f 

)2 
E, (56)

and the variance is (
c ( 

n ) 
/ h 

( n ) 
)

[
π n −1 

∏ n =1 
i =1 

(
1 + 1 /a (i ) 

f 

)][ 
1 + 

∑ n −1 
i =1 

(
1 /a (i ) 

f 

)2 
] . 

·
∫ π

− π

a 
(n −1) 
f 

. . . 

∫ π

− π

a 
(2) 
f 

∫ π

− π

a 
(1) 
f 

[
�ζ ( 

−→ 

b ) − E 

]2 

d b (1) d b (2) ... d b (n −1) . (57)

where 

E = 

1 

π n −1 
∏ n =1 

i =1 

(
1 + 1 /a (i ) 

f 

) ∫ π

− π

a 
(n −1) 
f 

. . . 

∫ π

− π

a 
(2) 
f 

∫ π

− π

a 
(1) 
f 

�ζ ( 
−→ 

b ) d b (1) d b (2) ... d b (n −1) , (58)

and b (i ) is the i th coordinate of 
−→ 

b . 
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