
International Journal of Solids and Structures 143 (2018) 262–273 

Contents lists available at ScienceDirect 

International Journal of Solids and Structures 

journal homepage: www.elsevier.com/locate/ijsolstr 

Topology optimization of dielectric elastomers for wide tunable band 

gaps 

Eliana Bortot a , 1 , Oded Amir b , Gal Shmuel a , ∗

a Faculty of Mechanical Engineering, Technion—Israel Institute of Technology, Haifa 320 0 0, Israel 
b Faculty of Civil Engineering, Technion—Israel Institute of Technology, Haifa 320 0 0, Israel 

a r t i c l e i n f o 

Article history: 

Received 15 November 2017 

Revised 5 February 2018 

Available online 27 March 2018 

Keywords: 

Dielectric elastomer composite 

Tunability 

Phononic crystal 

Topology optimization 

Band gap 

Finite deformation 

Wave propagation 

a b s t r a c t 

Dielectric elastomer composites exhibit band gaps—ranges of frequencies at which elastic waves cannot 

propagate—that are tunable by electrostatically-controlled deformations. We show how topology opti- 

mization of such composites can widen these gaps and improve their tunability. Our case study focuses 

on anti-plane shear waves in fiber composites, across a designated frequency range. Employing a genetic 

algorithm approach, we maximize the gap width when the composite is actuated by prescribed electric 

fields, as well the relative change in the gap width with respect to an unactuated composite. We present 

optimization results for a composite whose constituents agree with commercial products. We compare 

these results with the performance of a composite of the same constituents arranged in circular fibers, to 

demonstrate the improvement achieved by the optimization. We expect that the performance of dielectric 

elastomer composites can be further improved, by employing a larger design space than the exemplary 

space in this study. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The propagation of elastic waves in periodic structures is fre-

quency dependent. Importantly, at certain frequency bands, the

way in which waves scatter and interfere results with the anni-

hilation of their propagation ( Sigalas and Economou, 1992; Kush-

waha et al., 1993; Hussein et al., 2014 ). Based on this band gap

phenomenon, different applications with the objective to filter un-

desired mechanical motions, such as vibration isolators and noise

suppressors, were suggested ( Wen et al., 2005; Hussein et al.,

2007; Yin et al., 2015 ). It follows that the resultant band diagram

can be employed not only to filter waves, but also to direct their

propagation ( Srivastava, 2016; Zelhofer and Kochmann, 2017; Celli

et al., 2017 ). 

Structures of tunable band diagrams are advantageous, as their

frequency range can be adapted for different objectives. The

emergence of active structures, capable of changing their prop-

erties upon activation, opened a new avenue to achieve such

tunability. Activation methods include mechanical ( Babaee et al.,

2016; Shmuel and Band, 2016 ), thermal ( Ruzzene and Baz, 1999 ),
∗ Corresponding author. 
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agnetic ( Bayat and Gordaninejad, 2015 ) and electrical means

 Degraeve et al., 2015 ). 

A promising class of electrically tunable structures is based on

ielectric elastomers, favorable owing to their low cost, light weight,

ast response, and capability to undergo large formations over 100%

 Pelrine et al., 20 0 0; Carpi et al., 20 08 ), where recent experimental

orks show that under certain settings, area strains of hundreds

f percents are accessible ( Huang et al., 2012; Li et al., 2013; God-

ba et al., 2014 ). Indeed, it was theoretically demonstrated that by

ubjecting dielectric elastomer composites to quasi-static large de-

ormations, the band diagram of superposed waves is electrostati-

ally tunable ( Gei et al., 2011; Shmuel and Pernas-Salomón, 2016;

etz et al., 2017; Bortot and Shmuel, 2017; Getz and Shmuel, 2017 ).

xperimentally, Ziser and Shmuel (2017) showed the tunability by

oltage of flexural waves in a dielectric elastomer film, where Jia

t al. (2016) and Yu et al. (2017) realized tunable noise suppres-

ors based on pre-stretched dielectric elastomers membranes. Ac-

ordingly, dielectric elastomers have the potential to serve as elec-

rostatically tunable sound filters, vibration reducers, and waveg-

ides. However, the main drawback observed in all these investi-

ations is that the required voltage to achieve significant tunabil-

ty is extremely high. Since the electromechanical response ( Tian

t al., 2012 ) and band diagram characteristics ( Sigmund and Jensen,

003; Yi and Youn, 2016 ) can be improved by changing the com-

osite initial microstructure, a possible resolution is to seek opti-

ized unit cells; this is the objective of this work. 

https://doi.org/10.1016/j.ijsolstr.2018.03.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2018.03.014&domain=pdf
mailto:meshmuel@tx.technion.ac.il
https://doi.org/10.1016/j.ijsolstr.2018.03.014
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Our approach is based on topology optimization —a numerical

ethod that systematically searches for the material distribution

ptimizing designated objective functions ( Bendsøe and Kikuchi,

988 ). Topology optimization has been employed for various ap-

lications ( Bendsøe and Sigmund, 2003 ), and specifically for opti-

al band gaps ( Sigmund and Jensen, 2003; Halkjær et al., 2006;

azonas et al., 2006; Hussein et al., 2007; Bilal and Hussein, 2011;

iu et al., 2014; 2016; Li et al., 2016; Xie et al., 2017; Lu et al.,

017 ). For a comprehensive review we refer the reader to the ex-

ellent survey by Yi and Youn (2016) . Generally speaking, the idea

s to discretize the unit cell, such that the material properties of

ach element are the design parameters. The optimization pro-

ess consists of an iterative derivation of the band diagram asso-

iated with design parameters that are assigned by optimization

echniques. Notwithstanding the vast literature on topology opti-

ization of different band gaps, only recently Hedayatrasa et al.

2016) employed such approach for nonlinear elastic deformation 

ependent gaps; topology optimization of dielectric elastomers has

et to be explored. 

Our case study concerns anti-plane waves propagating in the

eriodicity plane of a fiber composite made of incompressible di-

lectric elastomer phases, deformed by a bias electric field along

he fibers ( Shmuel, 2013 ). As discussed earlier, the resultant band

iagram is tunable, owing to an interplay between the bias electric

eld, quasi-static deformation and superposed wave propagation.

he key parameters for band gap maximization are the material

roperty contrast as well as the fiber filling fraction and shape. In

ur study, we focus on these latter parameters and we employ the

enetic algorithm approach ( Holland, 1992 ) to find unit cells that

ptimize at prescribed electric fields the width of the gap, or its

elative change with respect to the unactuated state. Indeed, as

he sequel shows, these objectives are improved by the choice of

opology optimization-based unit cells. While our method is ap-

lied to anti-plane waves in specific types of composite and pre-

eformation, it is extendible to more general settings. Specifically,

t applies for in-plane waves of general propagation direction, as

ong their amplitude is small; it applies for compressible compos-

tes, as long as the constitutive behavior of the phases is linear, as

ndeed follows from the linearization about the deformed configu-

ation; it applies for three-dimensional composites, as long as the

icrostructure is periodic, and for pre-deformations than maintain

 periodic microstructure. 

The presentation of our study starts with a summary of non-

inear and linearized electroelasticity theory in Section 2 . This the-

ry was employed by Shmuel (2013) to determine the quasi-static

eformation of a soft composite of arbitrary fibers in response to

n axial electric field, and develop the equations governing super-

osed anti-plane waves; these are revisited in Section 3 , to provide

 self-contained report. Section 4 is dedicated to the topology op-

imization of the dielectric elastomer composite for the objectives

escribed in the introduction. We develop a method based on a

ast plane wave expansion (FPWE) approach to determine the band

iagram, and the genetic algorithm optimization which utilizes this

ethod. Optimization results are presented and compared with the

erformance of the naive choice of a unit cell with circular fiber in

ection 5 . Conclusions and summary are given in Section 6 . 

. Nonlinear and linearized electroelasticity 

The modern description of nonlinear electroelasticity is given in

orfmann and Ogden (2005) ; McMeeking and Landis (2005) ; Suo

t al. (2008) and Dorfmann and Ogden (2010) . In this Section we

rovide only the equations employed in the sequel; the reader is

eferred to the above references for the complete formulation. 

Consider a composite made up of two incompressible homoge-

eous dielectric phases m and f , and surrounded by vacuum. In
ts reference configuration, the body occupies the volume region
( m ) 
0 

∪ �( f ) 
0 

= �0 ⊂ R 

3 , whose boundary is ∂�0 . Here and in the

equel, superscript ( p ) indicates quantities at phase p . When sub-

ected to electromechanical loadings, the body is deformed and oc-

upies the volume �( m ) ∪ �( f ) = � with boundary ∂�. The quasi-

tatic deformation of the body is described by the vector field

, which maps material particles from the reference configuration

 ∈ �0 to their current configuration x ∈ �. The deformation gradi-

nt F = ∇ X χ is computed with respect to the reference coordinates

 . The determinant J = det F is the volume ratio of an infinitesimal

lement in the deformed configuration, d v , and its counterpart in

he reference configuration, d V . Accordingly, incompressibility im-

lies that J = 1 . 

The electrical fields in the dielectric satisfy 

 · d = 0 , ∇ × e = 0 ; (1)

ere, e is the electric field and d is the electric displacement field,

nd ∇ · ( • ) and ∇ × ( • ) are the divergence and curl operators with

espect to x . 

When mechanical body forces are neglected, the symmetric to-

al stress σ satisfies 

 · σ = 0 . (2) 

he corresponding jump conditions between the two phases m and

 are 

 σ� n = 0 , � d � · n = 0 , � e � × n = 0 , (3)

here n is the unit normal vector of a deformed area element, and

 •� = (•) (m ) − (•) ( f ) . 

A formulation that uses X as the independent variable is based

n the connections 

 = J σF −T , E = F T e , D = JF −1 d . (4)

he theory of Dorfmann and Ogden (2005) relates P and E to F and

 via an augmented energy density function �( F, D ), as follows 

 = 

∂�

∂F 
− p 0 F 

−T , E = 

∂�

∂D 

. (5)

ere, p 0 is a Lagrange multiplier which accounts for the constraint

f incompressibility. 

Small-amplitude waves propagating in the deformed body are

escribed in terms of the increments ˙ χ(X , t) and 

˙ D (X , t) . The in-

remental equations are compactly written in terms of the connec-

ions 

= 

1 

J 
˙ P F T , ě = F −T ˙ E , ď = 

1 

J 
F ̇ D , (6)

amely, 

 · ď = 0 , ∇ × ě = 0 , ∇ · � = ρ ˙ x , tt , (7)

here ˙ x (x , t) := 

˙ χ(X , t) . The field variables are related via the

quations 

= C h + ph − ˙ p I + B ̌d , (8)

ˇ
 = B 

T h + A ď . (9) 

ere, the increment in p is ˙ p , the constitutive tensors A , B and C 

re 

A i j = JF −1 
αi 

∂ 2 �

∂ D α∂ D β
F −1 
β j 

, B i jk = F jα
∂ 2 �

∂ F iα∂ D β
F −1 
βk 

, 

 i jkl = 

1 

J 
F jα

∂ 2 �

∂ F iα∂ F kβ
F lβ, (10) 

nd the displacement gradient h = ∇ ̇

 x is subjected to the incom-

ressibility constraint tr h = 0 . 
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Fig. 1. Dielectric elastomer fiber composite in the (a) reference configuration, and (b) deformed configuration, when subjected to an axial electric field. 

Fig. 2. (a) An N P × N P pixelized unit cell in the periodicity plane ( x 1 , x 3 ). On the basis of each fiber pixel P j ∈ { P ( f ) } spatial coordinate x j , its characteristics are calculated from 

those of a central square fiber P 0 with the same dimensions. (b) Discretization of the unit cell into a bit-matrix of zeros and ones indicating matrix- and fiber-filled pixels, 

according to exemplary material distribution δ( x ) . 
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3. Nonlinear voltage-induced deformations and anti-plane 

waves in fiber composites 

Band diagrams of dielectric elastomer composites are tunable

by voltage-controlled nonlinear deformations. Owing to the bias

electric field and resultant strains, the physical and geometrical

properties of the phases change; in turn, the propagation of su-

perposed elastic waves changes too. Since the voltage-deformation

relation of the phases is highly nonlinear, different magnitudes of

voltage result in significantly different deformations and instanta-

neous moduli, and in turn, significantly different band structures.

This approach to achieve tunability has been demonstrated in a

series of works ( Shmuel and deBotton, 2012; Shmuel, 2013; Getz

et al., 2017; Getz and Shmuel, 2017 ). For completeness, we sum-

marize next the case studied in Shmuel (2013) of anti-plane waves

in a fiber composite, which was deformed by an axial electric field.

Later on, we will apply topology optimization schemes to find unit

cell geometries that optimize prescribed gap characteristics, upon

the composite actuation. 

Consider an infinite dielectric elastomer composite, which is pe-

riodic in the ( x 1 , x 3 ) plane. The composite periodic cell is made up

of a fiber of arbitrary cross section (phase f ), in a different matrix

(phase m ). Repetitions of the unit cell are arranged in a square lat-

tice with periodicity A, see Fig. 1 (a). The composite is subjected to
f

n average electric field e 2 i 2 , 
2 where i j is a unit vector in the x j 

irection, see Fig. 1 (b). 

The resultant deformation depends on the constitutive behavior

f the phases constituting the composite, which we assume de-

cribed by the augmented Gentian functions 

( p ) (F , D ) = −μ( p ) J ( 
p ) 

m 

2 

ln 

[
1 − tr (F T F ) − 3 

J ( 
p ) 

m 

]
+ 

1 

2 ε( p ) 
D · F T FD ;

(11)

ere, μ( p ) is the shear modulus, ε( p ) is the dielectric constant, and

 

( p ) 
m 

models the strain stiffening exhibited by elastomers. 

When the phases are perfectly bonded and the only load is the

rescribed electric field, Shmuel (2013) found that the deformation

nd the electric field are homogeneous in the form 

 

( m ) = F ( f ) = diag 
[
λ, λ−2 , λ

]
, e ( m ) = e ( f ) = e i 2 , (12)

nd are related via 

ˇ
(
λ2 − λ−4 

)
= ε̄e 2 , (13)

here μ̌(p) = 

μ( p ) 

1 −(2 λ2 + λ−4 −3) /J 
( p ) 
m 

, ¯( •) = v ( m ) ( •) + v ( f ) ( •) and v ( p ) is

he volume fraction of phase p . To arrive at this result, Shmuel

2013) postulated a deformation from the outset, and verified it
2 This is achieved by applying voltage to electrodes coating the composite at the 

ar surfaces. 
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Fig. 3. Exemplary unit cells (left panels) and corresponding scanned segments in the Brillouin zones to determine the gaps extrema (indicated in green in the right panels) 

for (a) the symmetric and (b) asymmetric cases. The domain, on which material distribution is optimized, is indicated by a red contour. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. A schematic representation of the optimization procedure. 
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an satisfy the balance laws and boundary conditions. The resul-

ant equations delivered relation (13) . 

We are concerned with anti-plane waves propagating in the ( x 1 ,

 3 ) plane of the deformed composite. The equations for the corre-

ponding electric and elastic displacement fields are 

21 , 1 ( x , t ) + �23 , 3 ( x , t ) = ρ( x ) ̇ x 2 ,tt , (14) 

 ̌1 , 1 ( x , t ) + ď 3 , 3 ( x , t ) = 0 . (15) 
aking use of the linearized constitutive relations, Eqs. (14) and

15) obtain the form 

 T · ( ̃  μ( x ) ∇ T ̇ x 2 ( x , t ) − d 2 ( x ) ∇ T ϕ ( x , t ) ) = ρ( x ) ̇ x 2 ,tt , (16) 

 T · ( −d 2 ( x ) ∇ T ̇ x 2 ( x , t ) − ε( x ) ∇ T ϕ ( x , t ) ) = 0 . (17) 

ere, ϕ( x 1 , x 3 , t ) is a scalar potential from which ě is calcu-

ated such that ě = −∇ϕ, ˜ μ( x ) = μ̌( x ) λ2 − ε( x ) e 2 2 
, and ∇ T ( •) =

( •) , 1 i 1 + ( •) , 3 i 3 is the in-plane gradient operator. Eqs. (14) –(17) ,

hich govern the band diagram, do not admit an analytic solu-

ion. A method to obtain numerical solutions is described next. We

larify that while in the analysis to follow it is sufficient to an-

lyze single and finite unit-cell (in virtue of Bloch theorem), the

omposite we are analyzing is infinite. As such, Eqs. (16) –(17) are

ot subjected to external boundary conditions, and our objective is

o understand what kind of how elastic waves may propagate (or

ot), before addressing specific conditions other than the equations

f motion and Maxwell equations. 

. Fast plane wave expansion method and genetic algorithm 

Our goal is to determine the fiber distribution in the unit cell

hat optimizes desired band gap characteristics. To this end, in this

ection we first introduce the FPWE method for calculating the

and diagram ( Liu et al., 2014; Xie et al., 2017 ). Subsequently, we

resent an optimization procedure based on the genetic algorithm

 Holland, 1992 ). We note that for the applicability of the FPWE

ethod, the medium should be periodic, and the amplitude of the

aves should be small. Additionally, the constitutive behavior of

he phases should be linear, as indeed follows from the lineariza-

ion about the deformed configuration. 
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Fig. 5. (a) Pixel grid-based and (b) closed B-spline projection-based representations of the unit cell. 
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4.1. Fast plane wave expansion method 

The method starts with partitioning the unit cell into N P × N P 

pixels, see Fig. 2 (a). Each pixel corresponds either to the matrix

phase m or the fiber phase f . Thus, the design of the composite

structure is determined by the choice of the material in each pixel.

The material distribution in the unit cell is described using a

characteristic function of the pixel center position x j , defined as 

δ
(
x 

j 
)

= 

{
1 x 

j ⊂ �( f ) , 

0 x 

j �⊂ �( f ) , 
(18)

where j = 1 , . . . , N 

2 
P . Accordingly, the unit cell is represented by a

bit-string of zeros and ones indicating matrix- and fiber-filled pix-

els, M 

δ = 

[ 
δ
(
x 1 

)
, . . . , δ

(
x N 

2 
P 

)] 
, as in Fig. 2 (b). 

We recall that the material parameters are periodic functions

of x 1 and x 3 . The FPWE method exploits this to represent material

properties in Fourier series such that 

ζ ( x ) = 

∑ 

G 

ζ ( G ) exp ( i G · x ) , ζ = ˆ μ, ρ. (19)

Here, { G } is the infinite set of reciprocal lattice vectors. Since the

Bravais lattice of the composite in the deformed state is based

on a square unit cell of period a = λA, the reciprocal lattice is{
G = 

2 π
a n 1 i 1 + 

2 π
a n 3 i 3 , n 1 , n 3 ∈ N 

}
. The set of Fourier coefficients

{ ζ ( G )} associated with the reciprocal lattice vectors { G } is defined

by 

ζ (G ) = 

1 

a 2 

∫ ∫ 
s cell 

ζ (x ) exp ( −i G · x ) d s, (20)

where s cell is the area of the unit cell in �. 

Taking advantage of the fact that ζ ( x ) is piecewise constant

at x ∈ �( m ) and x ∈ �( f ) , we can write the Fourier coefficients of

a square fiber P 0 , with the same side length of the pixels a / N P ,

placed at the center of the unit cell as 

ζ0 ( G ) = 

{
v P ζ ( f ) + ( 1 − v P ) ζ (m ) G = 0 , (
ζ ( f ) − ζ (m ) 

)
F ( G ) G � = 0 , 

(21)

where 

F ( G ) = 

1 

a 2 

∫ ∫ 
s P 

exp ( −i G · x ) d s = v P sinc 

(
G 1 a 

2 N P 

)
sinc 

(
G 3 a 

2 N P 

)
; (22)

here v P = 1 /N 

2 
P 

and s P are the volume fraction and area of the

square fiber P 0 in �, respectively. The Fourier coefficients of any

fiber pixel P j ∈ { P ( f ) } in the unit cell are calculated from those of the

central square fiber P , according to the pixel location with respect
0 
o the center of the unit cell x j and the characteristic function δ( x j ).

he Fourier coefficients of the whole unit cell are accordingly 

( G ) = 

{
n Pf v P ζ + ( 1 − n Pf v P ) ζ (m ) G = 0 , (
ζ ( f ) − ζ (m ) 

)
F ( G ) g ( G ) G � = 0 . 

(23)

ere, n Pf is the total number of fiber pixels in the unit cell and

 ( G ) is given by 

 ( G ) = 

N 2 P ∑ 

j=1 

exp 

(
i G · x 

j 
)
δ
(
x 

j 
)
. (24)

s established by the Bloch theorem ( Kittel, 2005 ), the incremental

elds ˙ x 2 and ϕ are expressible in the form 

( x , t ) = 

∑ 

G 

ξ (G ) exp [ i ( G + k ) · x − i ωt ] , ξ = 

˙ x 2 , ϕ, (25)

here the Bloch wave vector is k = k 1 i 1 + k 3 i 3 , k 1 , k 3 ∈ R , and ω
s the angular frequency. Utilizing Eqs. (21) and (25) , we write Eqs.

16) and (17) as follows { ∑ 

G , G ′ 

[(
˜ μ( G ) ̇ x 2 

(
G 

′ ) − d 2 ( G ) ϕ 

(
G 

′ )) (
G 

′ + k 

)
·
(
G + G 

′ + k 

)

−ω 

2 ρ( G ) ̇ x 2 
(
G 

′ )]
exp 

[
i 
(
G + G 

′ ) · x − i ωt 
]} 

exp ( i k · x ) = 0 , (26)

{ ∑ 

G , G ′ 
[(

−d 2 ( G ) ̇ x 2 
(
G 

′ ) − ε( G ) ϕ 

(
G 

′ )) (
G 

′ + k 

)
·
(
G + G 

′ + k 

)]
exp 

[
i 
(
G + G 

′ ) · x − i ωt 
]} 

exp ( i k · x ) = 0 . 

(27)

Eqs. (26) and (27) hold for any x , and it follows the sums in the

urly brackets vanish. We multiply these sums by exp 

(
−i G 

′′ · x 
)
,

nd integrate the result over the unit-cell; since the only non-

anishing terms are those satisfying the condition G 

′′ = G + G 

′ , the

esultant equations are ∑ 

G ′ 

(
˜ μ
(
G − G 

′ ) ˙ x 2 
(
G 

′ ) − d 2 
(
G − G 

′ )ϕ 

(
G 

′ ))(G 

′ + k 

)
· ( G + k ) 

= ω 

2 
∑ 

G ′ 
ρ
(
G − G 

′ ) ˙ x 2 
(
G 

′ ), (28)

 

G ′ 

(
−d 2 

(
G − G 

′ ) ˙ x 2 
(
G 

′ ) − ε
(
G − G 

′ )ϕ 

(
G 

′ ))(G 

′ + k 

)
· ( G + k ) = 0 . 

(29)
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Fig. 6. Symmetric unit cells optimizing the gap width (left panels) at (a) e = 150 MV/m and (b) e = 300 MV/m, obtained using the pixel grid representation. Corresponding 

band diagrams are depicted in the right panels. Specifically, the eigenfrequencies in the reference and in the actuated configuration are shown by continuous red and dashed 

blue curves, respectively, as functions of k along the edges of the Brillouin zone. Left- and right-hatched areas indicate the band gaps in the actuated and in the reference 

states, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Eqs. (28) and (29) admit the matrix form 

Q 

( 1 , 1 ) Q 

( 1 , 2 ) 

Q 

( 2 , 1 ) Q 

( 2 , 2 ) 

]{
˙ x 2 

(
G 

′ )
ϕ 

(
G 

′ )
}

= ω 

2 

[
R 

(1 , 1) 0 

0 0 

]{
˙ x 2 

(
G 

′ )
ϕ 

(
G 

′ )
}

, (30) 

here ˙ x 2 and ϕ 

(
G 

′ ) are column vectors of the components ˙ x 2 
(
G 

′ )
nd ϕ 

(
G 

′ ), and the components of the matrices Q 

( 1 , 1 ) , Q 

( 1 , 2 ) ,

 

( 2 , 1 ) , Q 

( 2 , 2 ) and R 

( 1 , 1 ) are 

 

( 1 , 1 ) 
G , G ′ = ̃  μ

(
G − G 

′ )(G 

′ + k 

)
· ( G + k ) , (31) 

 

( 1 , 2 ) 
G , G ′ = − d 2 

(
G − G 

′ )(G 

′ + k 

)
· ( G + k ) , (32) 

 

( 1 , 2 ) 
G , G ′ = Q 

( 2 , 1 ) 
G , G ′ , (33) 

 

( 1 , 1 ) 
G , G ′ = − ε

(
G − G 

′ )(G 

′ + k 

)
· ( G + k ) , (34) 
 

( 1 , 1 ) 
G , G ′ = ρ

(
G − G 

′ ). (35) 

ubstituting the relation ϕ 

(
G 

′ ) = −
(
Q 

( 2 , 2 ) 
)−1 

Q 

( 2 , 1 ) ˙ x 2 
(
G 

′ ), we fi-

ally obtain 

 ̇ x 2 = ω 

2 R ̇ x 2 , (36)

here M = Q 

( 1 , 1 ) − Q 

( 1 , 2 ) 
(
Q 

( 2 , 2 ) 
)−1 

Q 

( 2 , 1 ) . 

The band diagram is computed by solving a finite version of Eq.

36) for ω as a function of k for a chosen finite subset of { G }. 

Under certain conditions, to calculate the gaps it is sufficient to

onsider only wave vectors at edges of the Brillouin zone ( Craster

t al., 2012 ). If the unit cell is symmetric with respect to x 1 and

 3 directions, these edges are between the points � = (0 , 0) , X =
(π/a, 0) and M = (π/a, π/a ) , illustrated by the green segments in

he right panel of Fig. 3 (a). If the unit cell is not symmetric addi-

ional edges between the points �, M and K = ( 0 , π/a ) are needed
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Fig. 7. Symmetric unit cells optimizing the relative change in the gap width (left panels) at (a) e = 150 MV/m and (b) e = 300 MV/m, obtained using the pixel grid repre- 

sentation. Corresponding band diagrams are depicted in the right panels. Specifically, the eigenfrequencies in the reference and in the actuated configuration are shown by 

continuous red and dashed blue curves, respectively, as functions of k along the edges of the Brillouin zone. Left- and right-hatched areas indicate the band gaps in the 

actuated and in the reference states, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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( Yi and Youn, 2016; Meng et al., 2017 ), illustrated by the green seg-

ments in the right panel in Fig. 3 (b). 

In our computations to follow, a number of 441 plane waves,

corresponding to −10 < n 1 , n 3 < 10 was found sufficient for the

convergence of the band diagram. For further details on the

method convergence, see the Appendix. 

4.2. Genetic algorithm and optimization procedure 

Our optimization is based on a genetic algorithm approach

( Holland, 1992 ). The algorithm starts with a pool of unit cell candi-

dates. Each candidate is represented by a vector of its design vari-

ables. For each candidate, our scheme calculates the finite defor-

mation in response to a prescribed electric field, and the resultant

band diagram using FPWE. We emphasize that the finite deforma-

tion and, in turn, the instantaneous moduli, depend on the fiber

filling fraction of each candidate. Therefore, the material proper-
ies that are used in the FPWE differ between candidates of differ-

nt filling fraction. According to a certain objective or fitness func-

ion, the genetic algorithm rates the band diagram of each can-

idate. Then, in order to create a new generation of candidates

ith higher fitness values, the algorithm applies the following op-

rators. Selection elects, on the basis of the fitness value, a por-

ion of the existing pool of candidates to create a new generation

ia crossover —an exchange of a section of the variable vectors of

wo candidates. Mutation corresponds to a random modification of

he variable vector of a candidate. The procedure is iterated until

he average change in the best fitness value over a certain num-

er of generations is less than or equal to a selected tolerance. A

chematic representation of the optimization procedure is depicted

n Fig. 4 . 

To represent the unit cell, we employ two different approaches.

he first approach is based on a representation of the unit cell by

eans of the pixel grid only, as depicted in Fig. 5 (a). Thereby, the
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Fig. 8. Unit cells optimizing the gap width (left panels) at (a) e = 150 MV/m and (b) e = 300 MV/m, obtained using the four points B-spline representation. Corresponding 

band diagrams are depicted in the right panels. Specifically, the eigenfrequencies in the reference and in the actuated configuration are shown by continuous red and dashed 

blue curves, respectively, as functions of k along the edges of the Brillouin zone. Left- and right-hatched areas indicate the band gaps in the actuated and in the reference 

states, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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(  
ber inclusion is represented by the filled pixels. The design vari-

bles of the unit cell are given by the components of the material

istribution bit-string M 

δ and their number is hence N 

2 
P 

. Clearly,

s N p increases, the searching space for the optimal solution in-

reases exponentially, since the number of possible unit cells is

 

N p 
4 

(
N p 
2 

+1 

)
. If symmetry of the unit cell with respect to x 1 and x 3 

irection is assumed, for example as in Fig. 3 (a), the number of de-

ign variables is reduced to N 

2 
P 
/ 4 . In this approach, each pixel is as-

igned with fiber or matrix properties independently of its neigh-

ors, such that the creation of multiple fiber inclusions is straight-

orward. 

Alternatively, the fiber can be represented via a closed B-spline

s shown in Fig. 5 (b) ( Vond ̌rejc et al., 2017 ). The B-spline is iden-

ified by the coordinates of its control points, whose number de-

ends on the B-spline order. The closed B-spline then is mapped

nto a pixel grid identifying fiber and matrix pixels. Fiber proper-

t  
ies will be assigned to pixels whose center lies within the space

dentified by the closed B-spline. The design variables in this case

re given by the coordinates of the B-spline control points. The

umber of variables in the optimization problem is significantly

ower than the pixel gird representation. In the present formula-

ion, this approach, being based on a single B-spline, allows for the

epresentation of only one inclusion in the unit cell. This drawback

an be overcome by considering multiple B-splines representing

eparate inclusions, that are optimized simultaneously. In the im-

lementation to follow, we restrict attention to the single B-spline

ormulation, and thus, we obtain only a single inclusion in this rep-

esentation. 

In our case study, we focus on the sonic band gap across the

udible frequency range 0–10 kHz. The optimization is carried out

ith respect to (i) the gap width in the actuated configuration, or

ii) the relative change in the gap width owing to the electric ac-

uation. The fitness function we seek to maximize for the first ob-
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Fig. 9. Unit cells optimizing the relative change in the gap width (left panels) at (a) e = 150 MV/m and (b) e = 300 MV/m, obtained using the four points B-spline repre- 

sentation. Corresponding band diagrams are depicted in the right panels. Specifically, the eigenfrequencies in the reference and in the actuated configuration are shown by 

continuous red and dashed blue curves, respectively, as functions of k along the edges of the Brillouin zone. Left- and right-hatched areas indicate the band gaps in the 

actuated and in the reference states, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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jective is 

f BG ( Y ) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

10 kHz − max k ( ω n ( Y , k ) ) 

if min k ( ω n +1 ( Y , k ) ) ≥ 10 kHz , 

min k ( ω n +1 ( Y , k ) ) − max k ( ω n ( Y , k ) ) 

if min k ( ω n +1 ( Y , k ) ) < 10 kHz . 

(37)

Here, min k ( ω n ( Y, k )) and max k ( ω n ( Y, k )) denote the minimum

and maximum of the n th eigenfrequency ω n over k for a given

design of the unit cell, Y , respectively. 

The fitness function to maximize for the second objective is 

f T ( Y ) = 

f BG ( Y ) − f 0 BG ( Y ) 

f 0 
BG ( Y ) 

. (38)

Here, f 0 
BG ( Y ) is the gap width associated with the undeformed

composite. Accordingly, its functional form is similar to f ( Y ),
BG 
ith the difference that the scanned Brillouin zone is bounded by

 k i | ≤π / A and not π / a . 

. Topology optimization results 

We present next the optimization results for the objective func-

ions in Eqs. (37) and (38) , through the two different methods of

nit cell representation. In the first case, the unit cell is discretized

nto a 20 × 20 pixel grid, while in the latter case we employ a

0 × 30 pixel grid, as the number of design variables is indepen-

ent of the number of pixels. The optimization procedure has been

mplemented in Matlab, using its built-in genetic algorithm. 

For the material constants, we use the composite in modeled

 Getz et al., 2017 ), namely, fibers made of polyurethane PT6100S

y Deerfield embedded in a matrix made of silicone CF19-2186 by

usil. The corresponding properties of these products are summa-

ized in Table 1 . 
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Table 1 

The density ρ , shear modulus μ, relative permittivity εr , locking parameter J m and dielectric strength of silicone 

CF19-2186 by Nusil and polyurethane PT6100S by Deerfield. 

Material ρ [kg/m 

3 ] μ [kPa] εr J m Dielectric strength [MV/m] 

Silicone CF19-2186 1100 333 2.8 46.3 235 

Polyurethane PT6100S 1200 5667 7 6.67 160 

Fig. 10. A circular fiber and its pixelized approximation (left panel) analyzed by the 

PWE and the FPWE methods are, respectively, in the right panel. Eigenfrequencies 

obtained by employing the PWE and FPWE methods are shown by solid blue and 

dashed red curves, respectively, as functions of k along the edges of the Brillouin 

zone. Shaded areas indicate the band gaps. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 

 

t  

n

 

o  

s  

a  

w  

t  

a  

i  

r

 

p  

d  

3  

c  

c  

T  

a  

b  

a  

d  

o  

g

 

i  

f  

4

 

a  

t  

e

 

e  

fi  

i  

n  

e  

i  

a  

e  

a  

o  

i  

f

 

u  

w  

s  

t  

t  

p

 

m  

t  

a

F

o

We set the lattice parameter in the undeformed configuration

o 6.3 mm and consider two values of the prescribed electric field,

amely e = 150 MV/m and e = 300 MV/m. 

To appreciate the results obtained by the optimization process

f the unit cell, we provide first as a comparison the results for the

tandard unit cell of a central circular fiber, when optimized over

ll fiber volume fractions ( Shmuel, 2013 ). At e = 150 MV/m, the

idth of the widest gap is 1.05 kHz, obtained using a volume frac-

ion of 0.68. The greatest relative change obtained via the electric

ctuation is 5.56%. At e = 300 MV/m, the width of the widest gap

s 1.13 kHz, obtained using a volume fraction of 0.69. The greatest

elative change obtained via the electric actuation is 32.36%. 

We begin by assuming a symmetric unit cell and employing the

ixel grid representation. Using this representation, the number of

esign variables is 100, and the number of possible unit cells is

.6 × 10 16 . The genetic algorithm evaluated 12,500 unit cells until

onvergence. Unit cells that optimize the gap width and its relative

hange are depicted in the left panels of Figs. 6 and 7 , respectively.

he first and second rows in each Fig. correspond to e = 150 MV/m
ig. 11. Upper and lower frequencies of the maximum band gap are as functions of n 1 and

ptimized cell, respectively. In panel a) solid and dashed lines denoting the PWE and FPW
nd 300 MV/m, respectively. Right panels show the corresponding

and diagrams. Specifically, the eigenfrequencies in the reference

nd in the actuated configuration are shown by continuous red and

ashed blue curves, respectively, as functions of k along the edges

f the Brillouin zone. Left- and right-hatched areas indicate band

aps in the actuated and reference states, respectively. 

The fiber volume fraction in Fig. 6 (a) is 0.64, achieving a max-

mal gap width of 4.05 kHz at e = 150 MV/m. The fiber volume

raction in Fig. 6 (b) is also 0.64, achieving a maximal gap width of

.31 kHz at e = 300 MV/m. 

The fiber volume fraction in Fig. 7 (a) is 0.55, achieving a rel-

tive change of 5.81% at e = 150 MV/m. The fiber volume frac-

ion in Fig. 7 (b) is 0.59, achieving a relative change of 43.09% at

 = 300 MV/m. 

Next, we relax the symmetry constraint on the unit cell and

mploy a closed spline with four control points to model a single

ber inclusion, such that corresponding number of design variables

s 8. The reduction in the number of design variables led to a sig-

ificant reduction in computation times, and the genetic algorithm

valuated 7500 unit cell until convergence. We recall that by us-

ng a single spline, our design space comprises only unit cells with

 single inclusion and interface. We further recall that the gaps

merge from the interference of incident and secondary waves that

re scattered across interfaces. Accordingly, we a priori expect that

ptimized unit cells with a single inclusion and interface will be

nferior to optimized unit cells with multiple inclusions and inter-

aces. 

Proceeding to the results, we illustrate the optimized unit cells

sing the single spline representation with respect to the gap

idth and its relative change in the left panels of Figs. 6–9 , re-

pectively. Again, the first and second rows in each Fig. correspond

o e = 150 MV/m and 300 MV/m, respectively. Right panels show

he corresponding band diagrams, with the same notation of the

revious Figs. 

The fiber volume fraction in Fig. 8 (a) is 0.65, achieving a maxi-

al gap width of 1.43 kHz at e = 150 MV/m. The fiber volume frac-

ion in Fig. 8 (b) is 0.69, achieving a maximal gap width of 1.67 kHz

t e = 300 MV/m. 
 n 3 . Panels a) and b) correspond to the circular fiber in Fig. 10 , and a representative 

E methods, respectively. 
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Table 2 

Objective functions of a unit cell with circular fiber of optimal volume fraction, and genetic algorithm-based 

unit cells represented using pixel grid and B-spline. 

Maximal width Greatest relative change 

Circular Pixel grid B-spline Circular Pixel grid B-spline 

e = 150 MV/m 1.05 kHz 4.05 kHz 1.43 kHz 5.56% 5.81% 5.76% 

e = 300 MV/m 1.13 kHz 4.31 kHz 1.67 kHz 32.36% 43.09% 32.46% 
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The fiber volume fraction in Fig. 9 (a) is 0.6, achieving a rel-

ative change of 5.76% at e = 150 MV/m. The fiber volume frac-

tion in Fig. 9 (b) is 0.65, achieving a relative change of 32.46% at

e = 300 MV/m. The results of the optimization process are sum-

marized in Table 2 . 

6. Conclusions 

In Section 4 , we introduced a scheme to optimize dielectric

elastomer fiber composites for wide band gaps, which are tunable

via electrostatically-controlled nonlinear deformations. This topol-

ogy optimization was applied to a case study of anti-plane shear

waves in specific pre-deformed composites across the audible fre-

quency range, however it is extensible to more general settings, i.e. ,

in-plane waves of general propagation direction, three-dimensional

compressible composites, and pre-deformations that maintain the

composite periodicity. The optimization objective is to maximize

the gap width associated with the actuated state, or the relative

change in the gap width between actuated and unactuated states,

at prescribed electric fields. 

Two approaches for the representation of the unit cell have

been employed. The first one is based on the pixel grid only, where

the design variables are given by the components of the material

distribution bit-string. The second one is based on the projection

of a closed B-spline onto the pixel grid, where the number of de-

sign variables is reduced to the number of the coordinates of the

B-spline control points. 

Optimization results summarized in Table 2 were obtained us-

ing two different representations for the design variables, namely,

pixel grid and B-spline. Assuming symmetric unit cells to re-

duce the number of design variables, pixel grid-based optimization

demonstrated a significant increase in the gap width with respect

to a unit cell with an optimal circular fiber. An improvement in

the relative change of the gap width was also demonstrated, albeit

very moderate. These improvements can be made more significant

by relaxing the symmetry restriction and increasing the number of

pixels, at the cost of longer computation times. Optimization re-

sults based on the four point B-spline representation, which uses

a significantly smaller number of design variables (8 versus 100),

also demonstrated improvement with respect to a unit cell with an

optimal circular fiber, however not substantial enough. This perfor-

mance can be improved by increasing the design space via (i) ad-

ditional splines; (ii) additional control points for each spline, and

(iii) a higher number of pixels. 
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ppendix 

The standard plane wave expansion (PWE) method is a popular

echnique to calculate different band diagrams, namely, in quan-

um mechanics, optics, and particularly for elastic composites ( e.g. ,

ushwaha et al., 1993; Sigalas and Economou, 1996; Vasseur et al.,

002; Barnwell et al., 2017 ), owing to its simplicity and the fact

hat it is exact, as the Fourier functions constitute a complete basis

or solution. Several experimental works agree with its predictions

 e.g. , Vasseur et al., 2002; Pichard et al., 2012 ), and investigations

n its convergence rate conclude that it depends on the specific

ormulation and contrast between the phase properties ( e.g. , Cao

t al., 2004; Tanaka et al., 20 0 0 ). To the best of our knowledge, ex-

ept the work of Xie et al. (2017) , a corresponding analysis of the

PWE method is not available; accordingly, we carried out the fol-

owing investigation. Firstly, we tested the FPWE using two bench-

ark problems, namely, circular and square fibers at the center of

he unit cell, in order to check if the solutions agree with the so-

utions obtained via the PWE method. The case of the square fiber

s reported also by Xie et al. (2017) , therein a comparison of the

PWE method with the finite element method is provided. Our in-

estigation of the circular fiber case is given in Fig. 10 , providing

 comparison of the band structures obtained via PWE and FPWE

ethods, where the latter was carried out using a pixelation of

0 × 40 grid. Therein, eigenfrequencies obtained by employing the

WE and FPWE methods are shown by solid blue and dashed red

urves, respectively, demonstrating good agreement. Specifically,

he error in the gap size is approximately 1%. Secondly, we exam-

ned the dependency on the number of plane waves by evaluating

he gap range as function of the indices n 1 , n 3 , which determine

he number plane waves (indices 6, 8, 10, 12, 14, 16, and 18 corre-

pond to 169, 289, 441, 625, 841, 1089 and 1369 plane waves, respec-

ively). Our investigation for the circular fiber and representative

ptimized unit cell is given in Fig. 11 . Therein, results obtained us-

ng the PWE and FPWE methods for the circular fiber are given by

olid and dashed lines, respectively. We find that 441 plane waves

s a good compromise between computational time and accuracy,

s with this number, the difference in the gap width is 5% in com-

arison with 1369 plane waves. Accordingly, this is the number we

sed throughout our computations. 
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