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Subject to voltage, dielectric elastomers deform and stiffen. We show that harmonic excitations at cer- 

tain frequencies cannot propagate in incompressible dielectric elastomer fiber composite films . Impor- 

tantly, we demonstrate that these band gaps are tunable by the voltage. To show this, we formulate the 

equations governing small-amplitude waves in a deformed film, taking into consideration its surfaces. 

We develop a scheme to numerically solve the resultant equations, based on the supercell plane wave 

expansion method. To arrive at the findings above, we apply our scheme to a composite with circular 

fibers, and parametrically study the propagation dependency on the phase properties, film thickness, and 

voltage. Our results are another step towards the use of soft dielectric films as active wave manipulators. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Mechanical waves traveling through elastic composites en-

ounter periodic boundaries, which create secondary waves and, in

urn, an interference pattern. This interference prevents the prop-

gation of waves at particular frequency intervals, referred to as

ragg band gaps ( Sigalas and Economou, 1992; Kushwaha et al.,

993; Hussein et al., 2014 ). Therefore, elastic composites exhibit-

ng band gaps can potentially protect from undesired vibrations

 Wen et al., 2005; Matlack et al., 2016 ) and filter noise ( Vasseur

t al., 2002; Babaee et al., 2016; Bortot and Shmuel, 2017 ). Since

n the process described, energy is redirected rather than dissi-

ated, such composites can have additional functionalities includ-

ng wave steering and energy tunneling ( Srivastava, 2016; Zelhofer

nd Kochmann, 2017; Ganesh et al., 2017 ). 

The band gap structure depends on the physical and geometri-

al properties of the composite. Therefore, the functionally of pas-

ive composites, which were initially studied and whose character-

stics are fixed, is fixed too. To achieve adaptive functionalities, ac-

ive composite, whose characteristics are tunable by external stim-

li, were later on investigated. Specifically, we recall active com-

osites which are tunable by deformation and mechanical instabil-

ties ( Bertoldi and Boyce, 2008; Shim et al., 2015; Shmuel and Band,

016; Barnwell et al., 2017 ); magnetic stimulus ( Matar et al., 2012;

ayat and Gordaninejad, 2015 ); electric loads ( Beck et al., 2011; De-

raeve et al., 2015; Shmuel and Salomón, 2016; Celli et al., 2017 );
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nd thermal tuning ( Ruzzene and Baz, 1999; Jim et al., 2009 ). In

his work, we investigate composites made of dielectric elastomer

lms ( Pelrine et al., 20 0 0; Carpi et al., 2010; Cohen and deBotton,

016 ), owing to their simple working principle, low cost, fast re-

ponse, and ability to experience significant geometrical and phys-

cal changes. 

Specifically, we consider a film made of two dielectric elastomer

hases, which is quasi-statically activated by applying voltage to a

air of compliant electrodes coating its upper and lower surfaces.

n the process, opposite charges accumulate on the electrodes, and

he resultant Coulomb force between these charges squeezes the

lm along its thickness, while the elastomer phases stiffen. On top

f the deformed configuration, we examine the propagation of in-

remental waves, while accounting for the reflections at the upper

nd lower surfaces; in terms of the mechanics terminology—we ex-

mine plate or Rayleigh–Lamb modes in the actuated film. Since the

ctuation changes the geometry and the stiffness of the film, it will

hange the propagation characteristics ( Shmuel et al., 2012 ). Partic-

larly, it is expected that the actuation will change the range of

he gaps. Our objective is to show that indeed the gaps are tun-

ble, and to study how the interplay between the voltage and the

hysical properties and thickness of the film affects this tunability.

hereby, this paper continues a series of works on tunable band

aps in dielectric elastomer composites; from gaps in the (i) thick-

ess modes of laminates ( Shmuel and deBotton, 2012 ), through (ii)

ulk anti-plane ( Shmuel, 2013 ) and (iii) bulk in-plane modes of

ber composites ( Getz et al., 2017 ), to Lamb modes in this paper. 

The stages of this work are presented in the following order.

irstly, a framework to analyze the dynamics of deformable dielec-
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tric composites 1 is reviewed in Section 2 ( Toupin, 1963; McMeek-

ing and Landis, 2005; deBotton et al., 2007; Zhao and Suo, 2010;

Dorfmann and Ogden, 2010; Pamies, 2014 ). This theory is spe-

cialized in Section 3 , to develop the equations governing small-

amplitude waves in a composite film of finite thickness, which was

electrostatically deformed. The derived coupled differential equa-

tions cannot be solved analytically. To obtain numerical solutions,

we formulate a variation of the supercell plane wave expansion

(SC-PWE) method ( Hou and Assouar, 2008; Vasseur et al., 2008 ),

which accounts for the finite deformation, electroelastic coupling

and outer boundaries. Utilizing our formulation, in Section 4 we

carry out a parametric study of the dependency of the band di-

agram on the volume fraction and the physical properties of each

constituent, thickness of the film, and applied voltage. Specifically,

the numerical analysis shows that the film exhibits complete gaps,

namely, independent of the propagation direction and the plane of

motion, which are indeed tunable by the applied voltage. A sum-

mary of our results concludes the paper in Section 5 . 

2. Dynamics of dielectric elastomer composites 

Consider a two-phase deformable dielectric surrounded by vac-

uum, occupying the volume �0 ⊂ R 

3 and bounded by ∂�0 . A con-

tinuous and differentiable function χ : �0 × I → R 

3 maps mate-

rial points X ∈ �0 at time t in the interval I ∈ R to their cur-

rent position x = χ( X , t ) . In the current configuration, the body

occupies the volume � and bounded by ∂�. Mappings based

on the deformation gradient ∇ X χ, denoted by F , connect line,

area and volume elements in the neighborhood of X , denoted d X ,

d A , and d V , respectively, and their current configuration counter-

parts. Specifically, these are d x = F d X , n d a = JF −T N d A and d v =
Jd V, where J ≡ det F > 0 , and N and n are unit normals of refer-

ential and deformed area elements, respectively. 

We denote by e and d the electric field and electric displace-

ment field in the current configuration, governed by Maxwell

equations 

∇ · d = 0 , ∇ × e = 0 , (1)

where ∇ · ( ·) and ∇ × ( ·) are the divergence and curl operators, re-

spectively, evaluated with respect to x . The form of the first of Eq.

(1) accounts for the absence of free body charge in dielectrics. The

second of Eq. (1) uses an electrostatic approximation, when the

length of the electromagnetic waves is significantly longer than

its mechanical counterpart. In vacuum, e and d are linearly re-

lated through the permittivity of free space ε 0 = 8 . 85 · 10 −12 F m 

−1 .

In the dielectric, they are related through the electric polarization

density field p e 

p e = d − ε 0 e . (2)

The balance of linear momentum in the presence of electric field

is 

∇ · σ = ρχ,tt , (3)

where ρ is the mass density, and σ is the total stress tensor, which

contains the electrostatic stress as well as the mechanical stress

( Dorfmann and Ogden, 2005; Bustamante et al., 2009 ). 

At the boundary between the body and the surrounding vac-

uum, the governing fields satisfy the jump conditions 

( σ − σ� ) n = t m 

, ( d − d 

� ) · n = −w e , ( e − e � ) × n = 0 , (4)
1 For our proof of concept, we find this framework—which neglects viscosity—

sufficient. A recent study on viscoelastic band gaps shows that accounting for vis- 

cosity does not have a fundamental effect on the band structure, but rather widens 

the gaps and shifts them towards lower frequencies ( Zhu et al., 2016 ). 

C  
here t m 

is a prescribed mechanical traction and w e is the surface

ree charge density; herein and throughout the paper ( ·) � denotes

uantities in vacuum. Specifically, σ� is 

� = ε0 

[ 
e � � e � − 1 

2 

( e � · e � ) I 
] 
, (5)

nown as the Maxwell stress. 

Assuming there is no interface free charge between adjacent

hases m and f , the jump conditions at internal boundaries are 

 σ� n = 0 , � d � · n = 0 , � e � × n = 0 , (6)

here � ·� ≡ (·) (m ) − (·) ( f ) ; herein and henceforth the value of ( ·) in
hase p is denoted by ( ·) ( p ) . 

The total first Piola–Kirchhoff stress, Lagrangian electric dis-

lacement and Lagrangian electric field, respectively, are 

 = J σF −T , D = JF −1 d , E = F T e ; (7)

hese satisfy the governing equations (3) in their Lagrangian form,

amely, 

 X · P = ρL χ,tt , ∇ X · D = 0 , ∇ X × E = 0 , (8)

here ρL = Jρ . As discussed by Dorfmann and Ogden (2005) , the

ransformation of the electric polarization density is not unique: it

an be defined similarly to the transformation of the electric field

r to the electric displacement. By choosing the analogue of the

atter, the Lagrangian form of relation (2) reads 

 e = D − ε 0 JC 

−1 E , (9)

here C = F T F . 

The fields P and E are derived from an augmented energy den-

ity function �( F, D, X ), as follows ( Dorfmann and Ogden, 2005 )

 = 

∂�

∂F 
− p 0 F 

−T , E = 

∂�

∂D 

, (10)

here p 0 is a Lagrangian multiplier accounting for the kinematic

onstraint J = 1 , if the material is incompressible; otherwise p 0 is

et to zero. 

To analyze superposed incremental motions, we consider small

ime-dependent perturbations of χ and D , denoted by ˙ χ( X , t )
nd 

˙ D ( X , t ) , respectively, accompanied by the increments ˙ P and
˙ 
 ( Dorfmann and Ogden, 2010 ). Herein and in the sequel, incre-

ents are denoted by a superposed dot. Using x as a variable in-

tead of X , the governing equations of the incremental problem can

e neatly written in terms of 

= J −1 ˙ P F T , ď = J −1 F ̇ D , ě = F −T ˙ E , (11)

hich satisfy 

 · � = ρ ˙ x ,tt , ∇ · ď = 0 , ∇ × ě = 0 , (12)

here ˙ x ( x , t ) ≡ ˙ χ( X , t ) . The linearization of the constitutive rela-

ions of incompressible materials is 

= C h + p 0 h 

T − ˙ p 0 I + B ̌d , ě = B 

T h + A ď , (13)

here h = ∇ ̇

 x , and on account of incompressibility 

 · ˙ x ≡ tr h = 0 ; (14)

erein 

(
B 

T h 

)
k 

= B i jk h i j , and the components of the tensors A , B

nd C are 

A i j = JF −1 
αi 

∂ 2 �

∂ D α∂ D β
F −1 
β j 

, B i jk = F jα
∂ 2 �

∂ F iα∂ D β
F −1 
βk 

, 

 i jkl = J −1 F jα
∂ 2 �

∂ F iα∂ F kβ
F lβ . (15)
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Fig. 1. Fiber composite film made of dielectric elastomers (a) in the reference configuration; (b) in the deformed configuration when subjected to an electric field along the 

fibers; (c) when incremental motions are superposed on top of the deformed state. These motions are functions of x 2 , as schematically illustrated by the close-up sketch to 

the right. 
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. Motions of actuated soft dielectric fiber composite films 

Consider a composite film whose phases are deformable di-

lectrics, and its thickness is H in the x 2 direction. The film com-

rises fibers arranged periodically inside a matrix in the ( x 1 , x 3 )

lane, such that the centers of adjacent fibers are at distance A

 Fig. 1 (a)). The upper and lower surfaces are coated with stretch-

ble electrodes, by which the film is actuated: when connected to

 voltage source, the film deforms ( Fig. 1 (b)). The applied voltage

s the only load—there are no mechanical tractions, and the film

s free to expand in the ( x 1 , x 3 ) plane. To model a general class of

oft dielectric phases, we consider energy functions in the form 

(p) = W 

(p) ( I 1 ) + 

1 

2 ε (p) 

(
γ (p) 

0 
I 4 e + γ (p) 

1 
I 5 e + γ (p) 

2 
I 6 e 

)
, (16) 

here I 1 = tr C , I 4 e = D · D , I 5 e = D · CD , I 6 e = D · C 

2 D , and W 

( p ) ( I 1 )

s any function of I 1 ; herein ε( p ) agrees with the dielectric con-

tant, such that ε (p) = ε (p) 
r ε 0 , where ε (p) 

r is the relative dielectric

onstant of phase p . Assuming the phases are perfectly bonded and

heir preferred direction is along the fibers, Getz et al. (2017) pos-

ulated a solution in the form of phase-wise constant fields, and

howed that this solution satisfies required continuity and jump

onditions. Furthermore, perfect bonding, in-plane symmetry and

ncompressibility further implied that the deformation is homoge-

eous, such that 

 

(m ) = F ( f ) = diag 
[
λ, λ−2 , λ

]
, (17)

he last of Eq. (6) showed that the electric field is homogeneous

oo 

 

( f ) 
2 

= e (m ) 
2 

= e 2 . (18)

y satisfying Eq. (4) and the rest of Eq. (6) , Getz et al. (2017) deter-

ined the relation between e 2 and λ; for complete details we refer

o Getz et al. (2017 , Section 3). Subsequently, they have calculated

he composite superposed motions, when approximated as a bulk .

n what follows, we investigate incremental motions of the de-

ormed film ( Fig. 1 (c)), while accounting for wave reflections from

he top and bottom surfaces, and for the dependency on the x 2 
oordinate, similarly to the model of Lamb (1917) in the limit of

nfinitesimal elasticity. Thereby, we extend the work of Getz et al.

2017) , from bulk modes, to plate or Lamb modes of the actuated

lm. 

We begin by specializing the equations governing linearized su-

erposed motions to our settings. 2 Accordingly, the first of Eq.

12) is 
2 We assume that the underlaying configuration is stable ; stability analysis is out- 

ide our scope, and has been addressed elsewhere ( Bertoldi and Gei, 2011; Siboni 

nd Castañeda, 2014; Siboni et al., 2014 ). 

t  

e  

a  

I  

t  
( x ) ̇ x 1 ,tt = 

[(
ˆ ς ( x ) + 2 ̂  μ( x ) 

)
˙ x 1 , 1 + ς̄ ( x ) ̇ x 2 , 2 + ˆ ς ( x ) ̇ x 3 , 3 

]
, 1 

+ 

[
μ̄( x ) ̇ x 1 , 2 + ˜ μ( x ) ̇ x 2 , 1 − ˜ d 2 ( x ) ϕ , 1 

]
, 2 

+ [ ̂  μ( x ) ̇ x 1 , 3 + ˆ μ( x ) ̇ x 3 , 1 ] , 3 − ˙ p 0 , 1 , (19) 

( x ) ̇ x 2 ,tt = 

[
˜ μ( x ) ̇ x 1 , 2 + ˜ μ( x ) ̇ x 2 , 1 − ˜ d 2 ( x ) ϕ , 1 

]
, 1 

+ 

[
ς̄ ( x ) ̇ x 1 , 1 + ˜ ς ( x ) ̇ x 2 , 2 + ς̄ ( x ) ̇ x 3 , 3 − d̄ 2 ( x ) ϕ , 2 

]
, 2 

+ 

[
˜ μ( x ) ̇ x 2 , 3 + ˜ μ( x ) ̇ x 3 , 2 − ˜ d 2 ( x ) ϕ , 3 

]
, 3 

− ˙ p 0 , 2 , (20) 

( x ) ̇ x 3 ,tt = [ ̂  μ( x ) ̇ x 1 , 3 + ˆ μ( x ) ̇ x 3 , 1 ] , 1 

+ 

[
˜ μ( x ) ̇ x 2 , 3 + μ̄( x ) ̇ x 3 , 2 − ˜ d 2 ( x ) ϕ , 3 

]
, 2 

+ 

[
ˆ ς ( x ) ̇ x 1 , 1 + ς̄ ( x ) ̇ x 2 , 2 + 

(
ˆ ς ( x ) +2 ̂  μ( x ) 

)
˙ x 3 , 3 

]
, 3 

− ˙ p 0 , 3 , 

(21) 

here the quantities ˆ μ( x ) , ˜ μ( x ) , μ̄( x ) , ˆ ς ( x ) , ˜ ς ( x ) , ς̄ ( x ) , ˜ d 2 ( x ) ,

 ̄2 ( x ) are given in Appendix A ; these quantities, as well as ρ( x ), are

eriodic in x , with the periodicity of deformed lattice. On account

f last of Eq. (12) , we write ě ( x , t ) = −∇ϕ ( x , t ) . Note that in con-

rast with the infinite case in Getz et al. (2017) , the fields depend

lso on x 2 . The set of equations is completed with the specializa-

ion of the incompressibility constraint (14) to our coordinates 

˙ 
 1 , 1 + 

˙ x 2 , 2 + 

˙ x 3 , 3 = 0 , (22)

nd the incremental Gauss law 

 = 

[
− ˜ ε ( x ) ∇ 1 ϕ − ˜ d 2 ( x ) ̇ x 1 , 2 − ˜ d 2 ( x ) ̇ x 2 , 1 

]
, 1 

+ 

[
−ε̄ ( x ) ∇ 2 ϕ − d̄ 2 ( x ) ̇ x 2 , 2 

]
, 2 

+ 

[
− ˜ ε ( x ) ∇ 3 ϕ − ˜ d 2 ( x ) ̇ x 2 , 3 − ˜ d 2 ( x ) ̇ x 3 , 2 

]
, 3 

, (23) 

here ˜ ε ( x ) and ε̄ ( x ) are given in Appendix A . 

Following Vasseur et al. (2008) and Hou and Assouar (2008) , in

rder to investigate wave propagation in a finite film we use the

C-PWE method. In this method, free boundary conditions at the

op and bottom surfaces are implicitly accounted for using a fic-

itious periodization of solid-vacuum layers, to enable a standard

WE also in the thickness direction ( Laude et al., 2010 ). Accord-

ngly, we employ a fictitious three-dimensional unit-cell by em-

edding the true two-dimensional unit-cell between two layers of

acuum ( Fig. 2 (a)). Hence, the fictitious super-cell has the dimen-

ions a × l × a , where a = λA, and l = h + 2 h � . Here, h = λ−2 H is

he thickness of the deformed film, and h � denotes the thickness of

ach vacuum layer in the fictitious unit-cell. The value h � is chosen

ccording to numerical considerations, described later in Section 4 .

n electroelastic media, an implementation of the SC-PWE using

he electric displacement field is accompanied with an erroneous
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Fig. 2. (a) Fictitious three-dimensional periodic super-cell. (b) Two-dimensional 

first irreducible Brillouin zone. 
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J  
coupling of the electric fields between cells along the fictitious pe-

riodization. In this formulation, evanescent electric fields at differ-

ent vacuum layers—related to the vacuum permittivity—incorrectly

interact with each other. This interaction is not physical since the

repetition of vacuum layers is artificial, in aim to set the stage for

a solution using a PWE approach. For further details, the reader

is referred to Laude et al. (2010 , Section IV). A remedy was found

by the latter group, using a formulation that is based on the elec-

tric polarization density instead on the electric displacement field.

Thereby, since the polarization vanishes in vacuum, the unphysical

interaction due to the fictitious periodization is avoided. Accord-

ingly, we replace Eq. (23) with an equation in terms of the electric

polarization density ( Appendix B ), such that 

0 = [ −ε 0 ˜ χe ( x ) ∇ 1 ϕ − ˜ p e 2 ( x ) ( ̇ x 1 , 2 + 

˙ x 2 , 1 ) ] , 1 

+ [ −ε 0 χ̄e ( x ) ∇ 2 ϕ − p̄ e 2 ( x ) ̇ x 2 , 2 ] , 2 

+ [ −ε 0 ˜ χe ( x ) ∇ 3 ϕ − ˜ p e 2 ( x ) ( ̇ x 2 , 3 + 

˙ x 3 , 2 ) ] , 3 , (24)

where ˜ p e 2 ( x ) , p̄ e 2 ( x ) , ˜ χe ( x ) and χ̄e ( x ) are given in Appendix A .

To validate the latter formulation, we have used it to evaluate—

and indeed recover—band diagrams of the bulk modes examined

in Shmuel (2013) and Getz et al. (2017) . 

To solve Eqs. (19) –(22) and (24) using the SC-PWE method, we

expand ρ , ˆ μ, ˜ μ, μ̄, ˆ ς , ˜ ς , ς̄ , ˜ d 2 , d̄ 2 , ˜ p e 2 , p̄ e 2 , ˜ χe and χ̄e , to a three-

dimensional Fourier series. The expansion of each quantity, say ζ ,

is 

ζ ( x ) = 

∑ 

G 

ζ ( G ) exp ( i G · x ) , 

ζ ( G ) = 

1 

v sc 

∫ 
v sc 

ζ ( x ) exp ( −i G · x ) d v , (25)

where { ζ ( G )} are the Fourier coefficients associ-

ated with the infinite set of reciprocal lattice vectors{
G | G = 

2 π
a n 1 i 1 + 

2 π
l 

n 2 i 2 + 

2 π
a n 3 i 3 ; n 1 , n 2 , n 3 ∈ N 

}
, and v sc is the

volume of the super-cell. Accounting for the super-cell periodicity,

the Fourier coefficients become 

ζ (G ) = 

⎧ ⎨ 

⎩ 

ζ ( f ) v ( f ) h 

l 
+ζ (m ) (1 − v ( f ) ) 

h 

l 
+2 ζ (S) h 

� 

l 
≡ ζ̄ , G = 0 , 

(ζ ( f ) − ζ (m ) ) S 1 (G ) + 2(ζ � −ζ (m ) ) S 2 (G ) ≡�ζ (G ) , G � = 0 , 

(26)

where 

S 1 ( G ) = 

1 

v sc 

∫ 
v ( f ) 

exp ( −i G · x ) d v , (27)

S 2 ( G ) = 

1 

v sc 

∫ 
v � 

exp ( −i G · x ) d v , (28)

and v ( f ) and v � are the volumes captured by the fiber phase and

each vacuum layer, respectively. Eqs. (27) and (28) are known as

structure functions that depend on the shape of the fibers (see

Kushwaha et al., 1994 , Section IV). Next, using the Bloch theorem,

we expand 

˙ x ( x , t ) , ϕ( x , t ) and ˙ p ( x , t ) in the form 
0 
(x , t) = 

∑ 

G ′ 
ϑ( G 

′ ) exp 

[
i 
(
G 

′ +k 

)
· x −iωt 

]
, ϑ = 

˙ x 1 , ˙ x 2 , ˙ x 3 , ϕ, ˙ p 0 , 

(29)

here ω is the angular frequency and k is the three-dimensional

loch wave vector. Here again, the summation in terms of G 

′ is

arried out over the set of reciprocal lattice vectors, defined af-

er Eq. (25) . Expansions (25) and (29) are inserted into Eqs. (19) )–

 22 ), and after arithmetic manipulations, the result can be com-

actly written in the following matrix form (see Appendix C for the

erivation): 

u = ω 

2 Ru , (30)

here u = 

[
˙ x 1 
(
G 

′ ), ˙ x 2 
(
G 

′ ), ˙ x 3 
(
G 

′ ), ϕ 

(
G 

′ ), i ̇ p 0 (G 

′ )]T 
contains the

pectral components of the unknowns, and the components of the

atrices Q and R are given in Appendix C . Eq. (30) defines a gen-

ralized eigenvalue problem for the eigenfrequencies ω at a given

ave vector k . In agreement with prior works ( Vasseur et al., 2008;

runet et al., 2008; El-Naggar et al., 2012 ), we have observed that

omputations with different values of k 2 yield similar results, as

hey should, since the periodicity in this direction is artificial. It

mplies that indeed there are no interaction between cells in the

 2 direction. Therefore, in the numerical investigation to follow, we

et k 2 = 0 , and consider Bloch vectors in the ( x 1 , x 3 ) plane. We re-

trict attention to wave vectors at the boundary of the irreducible

rst Brillouin zone, which defines the smallest region where wave

ropagation is unique ( Kittel, 2005 ). For a square lattice, the zone

oundary is defined by the lines connecting the points � = ( 0 , 0 ) ,

 = ( π/a, 0 ) and M = ( π/a, π/a ) , as illustrated in Fig. 2 (b); under

ertain conditions, scanning along this boundary is sufficient to

nd the extremum of the modes, and hence the gaps ( Harrison

t al., 2007; Craster et al., 2012 ). 

A truncation of the infinite-dimensional system (30) is done by

sing a finite subset of { G }, i.e. , a finite number of plane waves.

e examined the relative change in band diagram frequencies us-

ng different number of plane waves (see, e.g. , El-Naggar et al.,

012 ); in the subsequent parametric study, we found that the rel-

tive change of the band-gaps did not exceed 10% when increasing

he number of plane waves from 1183 to 3087, corresponding to

3 ≤ n 2 ≤ 3 and −6 ≤ n 1 , n 3 ≤ 6 or −10 ≤ n 1 , n 3 ≤ 10 , respectively.

. Numerical investigation 

To investigate the dependency of the motion on the proper-

ies of the phases, film thickness and in particular, bias electric

oad, we numerically evaluate the band structure in various cases.

hoosing a study on films with circular fibers, the structure func-

ions ( 27 ) and ( 28 ) obtain the from 

 1 ( G ) = 2 v ( f ) J 1 ( Gr 0 ) 

Gr 0 

sin 

(
G 2 

h 
2 

)
G 2 

h 2 
2 

h 

l 
, (31)

 2 ( G ) = 

sin 

(
G 1 

a 
2 

)
G 1 

a 
2 

sin 

(
G 3 

a 
2 

)
G 3 

a 
2 

sin 

(
G 2 

h � 

2 

)
G 2 

h � 

2 

h 

� 

l 
cos 

(
G 2 

h 

� + h 

2 

)
, (32)

here Gr 0 = 

√ 

4 πv ( f ) (n 2 
1 

+ n 2 
3 
) and J 1 is the Bessel function of the

rst kind of order 1. The constitutive behavior of each phase is de-

cribed by the popular dielectric Gent model ( e.g. , Siboni and Cas-

añeda, 2014; Zhao and Wang, 2014; Li et al., 2016 ). 

(p) 
DG 

= −μ(p) J (p) 
m 

2 

ln 

(
1 − I 1 − 3 

J (p) 
m 

)
+ 

1 

2 ε (p) 
I 5 e . (33)

erein, μ( p ) agrees with the shear modulus at small strains, and

 

( p ) 
m 

models the stiffening of elastomers near a limiting stretch
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Fig. 3. Band diagram of a soft dielectric composite film with circular fibers, subjected to the normalized electric bias field (a) ˆ e = 0 , (b) ˆ e = 1 . 8 and (c) ˆ e = 3 . 2 . The normal- 

ized frequencies ˆ ω are shown as functions of the reduced wave vector k along �XM �. Gray and blue regions correspond to complete and directional gaps, respectively. The 

composite properties are ρ(m ) = ρ( f ) = 10 0 0 kg 
m 3 

, μ(m ) = 20 0 kPa , ε(m ) 
r = 3 , J (m ) 

m = 10 , α = 10 , β = 10 , γ = 0 . 1 , v ( f ) = 0 . 5 and ˆ H = 0 . 45 . (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 
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w  
 Gent, 1996 ). We consider the following characteristic values of

oft dielectrics ( Kornbluh and Pelrine, 2008 ) for the matrix 

(m ) = 10 0 0 

kg 

m 

3 
, μ(m ) = 20 0 kPa , ε (m ) 

r = 3 , J (m ) 
m 

= 10 . (34)

he chosen value of J m 

corresponds to a limiting uniaxial stretch of

.5. We examine different composites by varying the fiber proper-

ies in terms of the shear contrast parameter α = μ( f ) /μ(m ) , per-

ittivity contrast parameter β = ε ( f ) /ε (m ) , and the locking con-

rast parameter γ = J 
( f ) 
m 

/J (m ) 
m 

. Note that when γ < 1 (resp. γ > 1)

he fibers stiffen before (resp. after) than the matrix as the defor-

ation enhances. For simplicity, we fix ρ( f ) = ρ( m ) . 

In our numerical implementation, we used the following prop-

rties for the vacuum 

� = 0 

kg 

m 

3 
, μ� = 0 kPa , ε � r = 1 . (35)

e note that we did not encounter numerical instabilities associ-

ted with the huge mismatch in the properties of the vacuum and

he solid, which is usually treated using the LIM method ( Vasseur

t al., 2008 ). Numerical instabilities appeared only when the thick-

ess of the vacuum layers was set to be thicker than twice the de-

ormed film thickness, i.e. , h � > 2 λ−2 H. This is in agreement with

he report of Hou and Assouar (2008) and Laude et al. (2010) ,

ho did not observe instabilities when this criterion was satisfied.

herefore, we set h � = 2 λ−2 H in following numerical analysis. 

To validate our SC-PWE implementation, we have evaluated the

and structure of the examples in Getz et al. (2017) , and recovered

heir results in the limit of a very thick film ( ̂  H � 10 0 0 , where ˆ H =
/A ). 

We investigate first an exemplary composite with the charac-

eristics 

= 10 , β = 10 , γ = 0 . 1 , v ( f ) = 0 . 5 , ˆ H = 0 . 45 . (36)

ig. 3 shows its normalized eigenfrequencies ˆ ω = ωA/ 2 πc, where

 = 

√ 

μ( m ) /ρ( m ) , as functions of the reduced wave vector k along

XM �, at different electric fields. Specifically, Fig. 3 (a)–(c) corre-

pond to ˆ e = 0 , 1.8 and 3.2, respectively. The corresponding in-

lane stretch ratios are λ = 1 , 1.28 and 1.33, respectively. The gray

nd blue regions denote complete gaps and directional gaps, re-

pectively; at frequencies of complete gaps, propagation is pro-

ibited, independently of the propagation mode and direction;
t frequencies of directional gaps, waves cannot propagate only

long specific directions. As ˆ e enhances, we observe a shift to-

ards higher frequencies for some modes along with a shift to-

ards lower frequencies of others. This intricate manner of change

auses an opening and closing of gaps as the electric bias field

s increased. At ˆ e = 0 , a complete gap covers the normalized fre-

uencies 1 . 29 � ˆ ω � 1 . 35 ; at ˆ e = 1 . 8 and ˆ e = 3 . 2 the complete gap

s across 1 . 77 � ˆ ω � 1 . 84 and 1 . 64 � ˆ ω � 1 . 67 , respectively. A di-

ectional gap appears in Fig. 3 (b) in the �X section ( x 1 and x 3 di-

ections), across the normalized frequencies 1 . 33 � ˆ ω � 1 . 52 . We

ote that in Fig. 3 (b) not all three fundamental modes, i.e. , 0 th an-

isymmetric ( A 0 ) and symmetric ( S 0 ) Lamb modes, and 0 th trans-

erse shear ( T 0 ), begin at the origin, as observed in prior works

 Wilm et al., 2002; Hou and Assouar, 2008; Vasseur et al., 2008 ).

o identify the modes, we evaluate the displacements associated

ith each curve emanating from the origin along the thickness of

he film, and examine their symmetry w.r.t. the mid-plane. Thus,

igs. 4 and 5 illustrate the displacements when ˆ e = 0 and 1.8, re-

pectively, at k = 

π
a i 1 + 

π
a i 3 , and arbitrary values of x 1 , x 3 and t . At

ˆ  = 0 , we identify the first, second and third modes, as the modes

 0 , T 0 and S 0 , respectively; at ˆ e = 1 . 8 , we identify the first and sec-

nd modes as the modes T 0 and S 0 , respectively. Indeed, through

 continuous evaluation of the band diagram as a function of ˆ e ,

e observed that the mode A 0 is shifted towards lower frequen-

ies until it vanishes. A similar shift and elimination of the mode

 0 in an actuated homogeneous film was observed by Shmuel et al.

2012) . 

The thickness of the film has a significant effect on the band di-

gram (see, e.g. , Gao et al. 2007; Chen et al. 2006 ). We explore next

he interplay between the initial thickness, the bias electric field,

nd the diagram. Specifically, Fig. 6 (a)–(c) illustrate the prohibited

ormalized frequencies as functions of ˆ e at ˆ H = 0 . 45 , 1 and 1.5, re-

pectively, when α = 10 , β = 10 , γ = 0 . 1 and v ( f ) = 0 . 5 . The com-

lete gaps are denoted by the gray regions. When 

ˆ H = 0 . 45 and

ˆ  = 0 , a gap covers the frequencies 1 . 30 � ˆ ω � 1 . 37 ; the applica-

ion of voltage narrows the gap, up to its closure. Two gaps ap-

ear at ˆ e � 1 . 4 and ˆ e � 3 . 16 , covering the frequencies 1 . 81 � ˆ ω �
 . 88 and 1 . 73 � ˆ ω � 1 . 75 , respectively, and close at ˆ e � 2 . 2 and

ˆ  � 3 . 22 , respectively. With 

ˆ H = 1 , no gaps appear without a bias

lectric field. A gap opens when ˆ e � 1 . 3 at ˆ ω � 1 . 34 , and closes

hen ˆ e � 2 . 4 at ˆ ω � 1 . 47 . A maximal width of � ˆ ω � 0 . 05 is ob-
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Fig. 4. The displacements ˙ x 1 (black), ˙ x 2 (red) and ˙ x 3 (blue) along the thickness of the film for the modes (a) A 0 , (b) T 0 and (c) S 0 , in arbitrary units (a.u.). The displacements 

are evaluated at k = 

π
a 

i 1 + 

π
a 

i 3 , and arbitrary values of x 1 , x 3 and t , when ˆ e = 0 . The composite properties are ρ(m ) = ρ( f ) = 10 0 0 kg 
m 3 

, μ(m ) = 20 0 kPa , ε(m ) 
r = 3 , J (m ) 

m = 10 , 

α = 10 , β = 10 , γ = 0 . 1 , v ( f ) = 0 . 5 and ˆ H = 0 . 45 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. The displacements ˙ x 1 (black), ˙ x 2 (red) and ˙ x 3 (blue) along the thickness of the film for the modes (a) T 0 and (b) S 0 , in arbitrary units (a.u.). The displacements are 

evaluated at k = 

π
a 

i 1 + 

π
a 

i 3 , and arbitrary values of x 1 , x 3 and t , when ˆ e = 1 . 8 . The composite properties are ρ(m ) = ρ( f ) = 10 0 0 kg 
m 3 

, μ(m ) = 20 0 kPa , ε(m ) 
r = 3 , J (m ) 

m = 10 , 

α = 10 , β = 10 , γ = 0 . 1 , v ( f ) = 0 . 5 and ˆ H = 0 . 45 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Prohibited normalized frequencies as functions of the electric bias field ˆ e at (a) ˆ H = 0 . 45 , (b) ˆ H = 1 and (c) ˆ H = 1 . 5 . The composite properties are ρ(m ) = ρ( f ) = 

10 0 0 kg 
m 3 

, μ(m ) = 20 0 kPa , ε(m ) 
r = 3 , J (m ) 

m = 10 , α = 10 , β = 10 , γ = 0 . 1 and v ( f ) = 0 . 5 . 
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Fig. 7. Complete gaps at ˆ e = 0 (gray regions), ˆ e = 1 . 8 (blue regions) and ˆ e = 3 . 2 (red regions) as functions of (a) the shear contrast α, (b) the permittivity contrast β , (c) 

the locking parameter contrast γ , and (d) the volume fraction v ( f ) . The composite properties are ρ(m ) = ρ( f ) = 10 0 0 kg 
m 3 

, μ(m ) = 20 0 kPa , ε(m ) 
r = 3 , J (m ) 

m = 10 , α = 10 , β = 10 , 

γ = 0 . 1 and v ( f ) = 0 . 5 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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t  
ained when ˆ e � 1 . 8 , at a central frequency of ˆ ω � 1 . 40 . The sec-

nd gap opens when ˆ e � 2 . 2 at ˆ ω � 1 . 73 , and is shifted towards

igher frequencies as ˆ e increases. At ˆ H = 1 . 5 , a higher electric field

s needed to open a gap, namely, ˆ e � 2 . Again the gap is shifted

owards higher frequencies as ˆ e is enhanced. 

We investigate next the dependency of the band diagram on the

hysical properties of the constituents. Fig. 7 (a) shows the com-

lete gaps as functions of α at β = 10 , γ = 0 . 1 and v ( f ) = 0 . 5

hen ˆ e = 0 (gray region), ˆ e = 1 . 8 (blue region) and ˆ e = 3 . 2 (red re-

ion). The minimal shear contrast observed for a gap opening is

� 6. The gap obtained for ˆ e = 0 opens when α � 6 at ˆ ω � 1 . 28 ,

nd becomes wider. The other two gaps appear only in certain

anges of α. Specifically, the gap obtained for ˆ e = 1 . 8 opens when

� 7 at ˆ ω � 1 . 82 and closes when α � 23 at ˆ ω � 1 . 95 . Its maxi-

al width is observed when α � 13 being � ˆ ω � 0 . 09 , at a central

requency of ˆ ω � 1 . 88 . 

Fig. 7 (b) displays the prohibited normalized frequencies as func-

ions of β at α = 10 , γ = 0 . 1 and v ( f ) = 0 . 5 when ˆ e = 1 . 8 (blue
egion) and ˆ e = 3 . 2 (red regions). The minimal permittivity con-

rast observed for a gap opening is β � 2. For ˆ e = 1 . 8 , a gap opens

t β � 2, about ˆ ω � 1 . 78 ; as β increases, it shifts towards lower

requencies until β � 4, then shifts towards higher frequencies. A

aximal width of � ˆ ω � 0 . 08 at a central frequency of ˆ ω � 1 . 89 is

btained when β � 14, then it becomes narrower when the con-

rast is increased. 

Fig. 7 (c) illustrates the prohibited normalized frequencies as

unctions of γ at α = 10 , β = 10 and v ( f ) = 0 . 5 when ˆ e = 1 . 8 (blue

egion) and ˆ e = 3 . 2 (red regions). No gaps were observed beyond

� 0.81. For ˆ e = 3 . 2 , a gap opens when γ � 0.1 at ˆ ω � 1 . 73 and

epeatedly closes and reopens with the increase of γ . The maxi-

al width is observed when γ � 0.36, and equals � ˆ ω � 0 . 18 at a

entral frequency of ˆ ω � 1 . 73 . 

Fig. 7 (d) shows the complete gaps as functions of v ( f ) at α = 10 ,

= 10 and γ = 0 . 1 when ˆ e = 0 (gray region), ˆ e = 1 . 8 (blue region)

nd ˆ e = 3 . 2 (red region). The gaps do not appear at volume frac-

ions lower than v ( f ) � 0.37 and greater than v ( f ) � 0.59. The gap
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Table 1 

Physical properties of silicone CF19-2186 and polyurethane PT6100S. 

Material ρ (kg/m 

3 ) μ (kPa) εr J m Dielectric strength (MV/m) 

Silicone CF19-2186 1100 333 2.8 46.3 235 

Polyurethane PT6100S 1200 5667 7 6.67 160 

Fig. 8. Band diagrams of a composite made of silicone CF19-2186 matrix and circular polyurethane PT6100S fibers. The initial film thickness is H = 1 mm , the referential 

radius of the fibers is R = 2 . 5 mm , and the volume fraction is v ( f ) = 0 . 5 . The diagrams are evaluated at (a) e = 0 MV / m , (b) e = 160 MV / m , and (c) e = 235 MV / m . The 

eigenfrequencies ω are shown as functions of the reduced wave vector k along �XM �. The gray region corresponds to a complete gap. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

t  

p  

o  

s  

a  

c  

k  

c  

t  

f  

c  

p  

s  

c  

c  

p  

p  

t  

e  

p  

b  

s  

p  

r  

t  

i  

t

A

obtained for ˆ e = 0 opens when v ( f ) � 0.37 at ˆ ω � 1 . 19 , and closes

at v ( f ) � 0.57. A maximal width of � ˆ ω � 0 . 065 is obtained when

v ( f ) � 0.5, at a central frequency of ˆ ω � 1 . 34 . The gaps obtained for

ˆ e = 1 . 8 and 3.2 open when v ( f ) � 0.4 at ˆ ω � 1 . 65 and 1.5, respec-

tively, and closes when v ( f ) � 0.59 and 0.5, respectively; their max-

imal widths are � ˆ ω � 0 . 08 and 0.05, when v ( f ) � 0.5 and 0.45, re-

spectively. 

We complete the numerical investigation with an analysis of a

composite whose properties are of commercial products as in the

example of Getz et al. (2017) . Therein, the matrix and fibers are

modeled as silicone CF19-2186 by Nusil and polyurethane PT6100S

by Deerfield, respectively. We provide their relevant properties in

Table 1 . Upon setting the unit-cell dimensions, we note that cur-

rent technologies enable 3D printing of features down to the mi-

croscale ( Raney and Lewis, 2015 ). In what follows, we consider

initial film thickness of H = 1 mm , with fibers of referential ra-

dius R = 2 . 5 mm , whose center-to-center distance is A � 6.3 mm,

agreeing with the length-scale in Pelrine et al. (1998) . Fig. 8 shows

the dimensional eigenfrequencies ω as functions of the reduced

wave vector k along �XM �, obtained at different values of elec-

tric field. Specifically, Fig. 8 (a)(c) correspond to e = 0 MV / m , e =
160 MV / m and e = 235 MV / m , respectively. In the absence of elec-

tric field there are no gaps ( Fig. 8 (a)). At e = 160 MV / m —the elec-

tric breakdown of polyurethane—there is an appreciable change in

the diagram, although it is not accompanied with a gap opening.

At e = 235 MV / m , there is a complete gap across the frequencies

24.26 kHz � ω � 26.95 kHz. While the complete gap appears at a

voltage beyond the electric breakdown of the polyurethane, recent

studies suggest that in the future, such electric loads will be acces-

sible with the improvement of the dielectric strength of elastomers

( Madsen et al., 2014; La and Lau, 2016 ). A continuous illustration of

the change of the diagram as a function of e is shown in video 1

of the supplementary material online. 
 

g  
. Summary 

We have investigated the elastic band diagram of a film made of

wo soft dielectric phases, seeking to achieve tunable band gaps in

ractical structures. To this end, we have specialized the equations

f small-amplitude waves in finitely strained dielectrics, to the ba-

ic configuration of a film which was deformed by an applied volt-

ge across its coating electrodes. The coefficients of the resultant

oupled differential equations are position dependent, whose un-

nowns are functions of all three coordinates. To obtain a numeri-

al solution, we have developed a variation of the SC-PWE method

o our setting, which delivers a generalized matrix eigenproblem

or the frequencies and modes. Using the method, we have exe-

uted a parametric study to explore how the band structure de-

ends on the thickness of the film, the volume fraction of the con-

tituents, and their physical properties. We found that for certain

ombinations of the above parameters, there exist directional and

omplete gaps, and that for other combinations there are no com-

lete gaps, nor directional ones. Importantly, we found that by ap-

lying voltage (i) the location and width of existing gaps can be

uned; (ii) gaps can be opened in initially continuous diagrams. We

mphasize that this electrostatically-controlled tuning strongly de-

ends on the thickness of the film. Finally, we have examined the

and diagram of a composite whose constituent properties corre-

pond to commercial products. We have demonstrated that by ap-

lying voltage, a complete band gap is achieved; we note that the

equired electric field it significantly lower than the required in

he bulk counterpart ( Getz et al., 2017 ). We expect that our find-

ngs will promote realizing dielectric elastomer composites as ac-

ive waveguides and isolators. 
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ppendix A 

The quantities ˆ μ( x ) , ˜ μ( x ) , μ̄( x ) , ˆ ς ( x ) , ˜ ς ( x ) , ς̄ ( x ) , ˜ d 2 ( x ) ,

 ̄2 ( x ) , ˜ ε ( x ) , ε̄ ( x ) , ˜ p e 2 ( x ) , p̄ e 2 ( x ) , ˜ χe ( x ) and χ̄e ( x ) are 

ˆ (x ) = μ̌( x ) λ2 , (A.1) 

˜ (x ) = 

{ 

λ8 γ̌ ( x ) γ2 ( x ) −
[(

λ6 + 1 

)
γ2 ( x ) + λ4 γ1 ( x ) 

]2 

ˆ γ 2 ( x ) ̌γ ( x ) 

} 

× λ2 ε ( x ) e 2 2 + ˆ μ( x ) , (A.2) 

¯ (x ) = 

{ 

λ2 γ̌ ( x ) 
[(

λ6 +2 
)
γ2 ( x ) + λ4 γ1 ( x ) 

]
−

[(
λ6 + 1 

)
γ2 ( x ) + λ4 γ1 ( x ) 

]2 

ˆ γ 2 ( x ) ̌γ ( x ) 

} 

× λ2 ε ( x ) e 2 2 + μ̌( x ) λ−4 , (A.3) 

ˆ  (x ) = ς̌ ( x ) λ4 , (A.4) 

˜  (x ) = 

[ 

ˆ γ ( x ) 
(
λ4 γ1 ( x ) + 6 γ2 ( x ) 

)
−

(
2 λ4 γ1 ( x ) + 4 γ2 ( x ) 

)2 

ˆ γ ( p ) 
3 

] 

× λ4 ε ( x ) e 2 2 + ς̌ ( x ) λ−8 + μ̌( x ) 
(
λ−4 + λ2 

)
, (A.5) 

¯ (x ) = ς̌ ( x ) λ−2 , (A.6) 

˜ 
 2 (x ) = 

[ 

γ2 ( x ) 
(
λ6 + 1 

)
+ γ1 ( x ) λ4 

ˆ γ ( x ) ̌γ ( x ) 

] 

λ2 ε(x ) e 2 , (A.7) 

 ̄2 (x ) = 

[
2 λ4 γ1 ( x ) + 4 γ2 ( x ) 

ˆ γ 2 ( x ) 

]
λ4 ε(x ) e 2 , (A.8) 

˜  (x ) = 

λ2 

γ̌ ( x ) 
ε(x ) , (A.9) 

¯ (x ) = 

λ4 

ˆ γ ( x ) 
ε(x ) , (A.10) 

˜ p e 2 (x ) = 

{ [ 

γ2 ( x ) 
(
λ6 + 1 

)
+ γ1 ( x ) λ4 

ˆ γ ( x ) ̌γ ( x ) 

] 

λ2 ε(x ) 

ε 0 
− 1 

} 

ε 0 e 2 , 

(A.11) 

p̄ e 2 (x ) = 

{[
2 λ4 γ1 ( x ) + 4 γ2 ( x ) 

ˆ γ 2 ( x ) 

]
λ4 ε(x ) 

ε 0 
− 1 

}
ε 0 e 2 , (A.12) 

˜ e (x ) = 

λ2 

γ̌ ( x ) 

ε(x ) 

ε 0 
− 1 , (A.13) 

¯e (x ) = 

λ4 

ˆ γ ( x ) 

ε(x ) 

ε 0 
− 1 , (A.14) 

here ς̌ 

(p) = 4 
∂ 2 W 

(p) 
1 

∂ 2 I 1 
, μ̌(p) = 2 

∂W 

(p) 
1 

∂ I 1 
, ˆ γ ( x ) = λ8 γ0 ( x ) + λ4 γ1 ( x ) +

( x ) and γ̌ ( x ) = γ ( x ) + λ2 γ ( x ) + λ4 γ ( x ) . 
2 0 1 2 
When specialized to Eq. (33) , we have 

ˆ (x ) = 

μ( x ) λ2 

1 − 2 λ2 + λ−4 −3 
J m ( x ) 

, (A.15) 

˜ (x ) = ˆ μ(x ) − ε(x ) e 2 2 , (A.16) 

¯ (x ) = 

μ( x ) λ−4 

1 − 2 λ2 + λ−4 −3 
J m ( x ) 

, (A.17) 

ˆ  (x ) = 

2 μ( x ) λ4 

J m 

( x ) 
(
1 − 2 λ2 + λ−4 −3 

J m ( x ) 

)2 
, (A.18) 

˜  (x ) = 

2 μ( x ) λ−8 

J m 

( x ) 
(
1 − 2 λ2 + λ−4 −3 

J m ( x ) 

)2 
+ ˆ μ( x ) + μ̄( x ) − 3 ε(x ) e 2 2 , (A.19) 

¯ (x ) = 

2 μ( x ) λ−2 

J m 

( x ) 
(
1 − 2 λ2 + λ−4 −3 

J m ( x ) 

)2 
, (A.20) 

˜ 
 (x ) = ε(x ) e 2 = d 2 ( x ) , (A.21) 

 ̄(x ) = 2 ε(x ) e 2 = 2 d 2 ( x ) , (A.22) 

˜  (x ) = ε(x ) , (A.23) 

¯ (x ) = ε(x ) , (A.24) 

˜ p (x ) = 

(
ε(x ) 

ε 0 
− 1 

)
ε 0 e 2 = p e 2 ( x ) , (A.25) 

p̄ (x ) = 2 

(
ε(x ) 

ε 0 
− 1 

)
ε 0 e 

( p ) 
2 

= 2 p e 2 ( x ) , (A.26) 

˜ (x ) = 

ε(x ) 

ε 0 
− 1 , (A.27) 

¯e (x ) = 

ε(x ) 

ε 0 
− 1 . (A.28) 

ppendix B 

We derive the linear approximation of the electric polarization

ensity. This is done using an expansion of Eq. (9) as a Taylor series

bout the static current configuration, such that 

˙ 
 e = 

˙ D − ε 0 ˙ J C 

−1 E − ε 0 J ̇ C 

−1 E − ε 0 JC 

−1 ˙ E 

= 

˙ D − ε 0 JC 

−1 ˙ E + ε 0 F 
−1 

(
˙ F F −1 + F −T ˙ F T − JF −T · ˙ F 

)
F −T E , (B.1) 

here ˙ J = JF −T : ˙ F and 

˙ C 

−1 = −F −1 
(

˙ F F −1 + F −T ˙ F T 
)
F −T . Pushing-

orward the linear approximation provides 

ˇ
 e = J −1 F ̇ P e 

= J −1 F ̇ D − ε 0 F 
−T ˙ E + ε 0 

(
˙ F F −1 + F −T ˙ F T 

)
F −T E − ε 0 

(
F −T · ˙ F 

)
F −T E 

= ď − ε 0 ̌e + ε 0 
(
h + h 

T − tr h 

)
e , (B.2) 

here ˙ F = hF . In view of the second of Eq. (13) , we can write p̌ e 

n terms of ď , such that 

ˇ
 e = 

(
I − ε 0 A 

−1 
)
ď − ε 0 B 

T h + ε 0 
(
h + h 

T − tr h 

)
e . (B.3)

http://dx.doi.org/10.13039/501100003973
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When considering an incompressible homogenous material

with an energy density function of the form 

� = W elas ( I 1 , I 2 ) + W 5 ( I 5 e ) , (B.4)

the constitutive tensors A and B become 

A i j = 

1 

ε̌ 
δi j , (B.5)

B i jk = ε̌ 
(
δ jk d i + δik d j 

)
, (B.6)

where ε̌ = (2 
∂W 5 
∂ I 5 e 

) −1 and e = ε̌ d . Note that W elas ( I 1 , I 2 ) is a possibly

nonlinear function of I 1 and I 2 = 

1 
2 [( tr C ) 2 − tr (C 

2 )] , where W 5 ( I 5 e )

depends linearly on I 5 e . Applying Eqs. (A.5) and (A.6) to Eq. (A.3) ,

while considering incompressibility, yields 

p̌ e = 

[ 
1 − ε 0 

ε̌ 

] 
ď . (B.7)

Thereby, the divergence of p̌ e becomes 

∇ · p̌ e = 

[ 
1 − ε 0 

ε̌ 

] 
∇ · ď = 0 , (B.8)

where the last transition relies on Gauss law for ď given in the

second of Eq. (12) . The divergence of the electric polarization

density equals to the minus of volumetric bound charge density.

Hence, the incremental volumetric bound charge density vanishes

in an incompressible homogeneous dielectric media with an en-

ergy function of the form (A.4) . Eq. (24) is obtained when special-

izing the constitutive law (16) to a case in which γ (p) 
0 

= γ (p) 
2 

= 0

and γ (p) 
1 

= 1 . 

Appendix C 

Insertion of expansions (25) and (29) into Eqs. (19) –(22) pro-

vides {∑ 

G , G ′ 
[ ̇ x 1 ( G 

′ )[( ̂  ς (G ) + 2 ̂  μ(G ))(G 

′ + k ) 1 (G + G 

′ + k ) 1 

+ μ̄(G )(G 

′ + k ) 2 (G + G 

′ + k ) 2 + ˆ μ(G )(G 

′ + k ) 3 (G + G 

′ + k ) 3 

− ω 

2 ρ(G )] + 

˙ x 2 ( G 

′ )[ ̄ς (G )(G 

′ + k ) 2 (G + G 

′ + k ) 1 

+ ˜ μ(G )(G 

′ + k ) 1 (G + G 

′ + k ) 2 ] + 

˙ x 3 ( G 

′ )[ ̂  ς (G )(G 

′ + k ) 3 

× (G + G 

′ + k ) 1 + ˆ μ(G )(G 

′ + k ) 1 (G + G 

′ + k ) 3 ] 

− ϕ(G 

′ ) ̃  d 2 (G )(G 

′ + k ) 1 (G + G 

′ + k ) 2 ] exp (i (G + G 

′ ) · x ) 

+ 

∑ 

G ′ 
i ˙ p 0 (G 

′ )(G 

′ + k ) 1 exp (i G 

′ · x ) 

}
exp (i k · x − iωt) = 0 , 

(C.1)

{∑ 

G , G ′ 
[ ̇ x 1 ( G 

′ )[ ̃  μ(G )(G 

′ + k ) 2 (G + G 

′ + k ) 1 + ς̄ (G )(G 

′ + k ) 1 

× (G + G 

′ + k ) 2 ] + 

˙ x 2 ( G 

′ )[ ̃  μ(G )(G 

′ + k ) 1 (G + G 

′ + k ) 1 

+ ˜ ς (G )(G 

′ + k ) 2 (G + G 

′ + k ) 2 + ˜ μ(G )(G 

′ + k ) 3 (G + G 

′ + k ) 3 

− ω 

2 ρ(G )] + 

˙ x 3 ( G 

′ )[ ̄ς (G )(G 

′ + k ) 3 (G + G 

′ + k ) 2 + ˜ μ(G ) 

× (G 

′ + k ) 2 (G + G 

′ + k ) 3 ] − ϕ(G 

′ )[ ̃  d 2 (G )(G 

′ + k ) 1 (G + G 

′ +k ) 1 

+ d̄ 2 (G )(G 

′ + k ) 2 (G + G 

′ + k ) 2 + 

˜ d 2 (G )(G 

′ + k ) 3 (G + G 

′ + k ) 3 ]] 

exp (i (G + G 

′ ) · x ) + 

∑ 

G ′ 
i ˙ p 0 (G 

′ )(G 

′ + k ) 2 exp (i G 

′ · x ) 

}
exp (i k · x − iωt) = 0 , (C.2)
∑ 

G , G ′ 
[ ̇ x 1 ( G 

′ )[ ̂  μ(G )(G 

′ + k ) 3 (G + G 

′ + k ) 1 + ˆ ς (G )(G 

′ + k ) 1 

× (G + G 

′ + k ) 3 ] + 

˙ x 2 ( G 

′ )[ ̃  μ(G )(G 

′ + k ) 3 (G + G 

′ + k ) 2 

+ ς̄ (G )(G 

′ + k ) 2 (G + G 

′ + k ) 3 ] + 

˙ x 3 ( G 

′ )[ ̂  μ(G )(G 

′ + k ) 1 

× (G + G 

′ + k ) 1 + μ̄(G )(G 

′ + k ) 2 (G + G 

′ + k ) 2 

+ ( ̂  ς (G ) + 2 ̂  μ(G ))(G 

′ + k ) 3 (G + G 

′ + k ) 3 − ω 

2 ρ(G )] 

− ϕ(G 

′ ) ̃  d 2 (G )(G 

′ + k ) 3 (G + G 

′ + k ) 2 ] exp (i (G + G 

′ ) · x ) 

+ 

∑ 

G ′ 
i ˙ p 0 (G 

′ )(G 

′ + k ) 3 exp (i G 

′ · x ) 

}
exp (i k · x − iωt) = 0 , 

(C.3)

∑ 

G ′ 
[ ̇ x 1 ( G 

′ )(G 

′ + k ) 1 + 

˙ x 2 ( G 

′ )(G 

′ + k ) 2 + 

˙ x 3 ( G 

′ )(G 

′ + k ) 3 ] 

exp (G 

′ · x ) 

}
i exp (i k · x − iωt) = 0 , (C.4)

∑ 

G , G ′ 
[ − ˙ x 1 ( G 

′ ) ̃  p e 2 (G )(G 

′ + k ) 2 (G + G 

′ + k ) 1 − ˙ x 3 ( G 

′ ) ̃  p e 2 (G ) 

× (G 

′ + k ) 2 (G + G 

′ + k ) 3 − ˙ x 2 ( G 

′ )[ ̃  p e 2 (G )(G 

′ + k ) 1 

× (G + G 

′ + k ) 1 + p̄ e 2 (G )(G 

′ + k ) 2 (G + G 

′ + k ) 2 

+ 

˜ p e 2 (G )(G 

′ + k ) 3 (G + G 

′ + k ) 3 ] 

− ϕ(G 

′ ) ε 0 [ ̃  χe (G )(G 

′ + k ) 1 (G + G 

′ + k ) 1 

+ χ̄e (G )(G 

′ + k ) 2 (G + G 

′ +k ) 2 + ˜ χe (G )(G 

′ +k ) 3 (G+G 

′ +k ) 3 ]] 

exp ((G + G 

′ ) · x ) 

}
exp (i k · x − iωt) = 0 (C.5)

he sums in the curly brackets must vanish since the equations are

alid for any x . We multiply these sums by exp ( i G 

′ ′ · x ), and inte-

rate the product over the super-cell. It follows that in the summa-

ions over both G and G 

′ only terms for which G 

′′ = G + G 

′ remain,

nd in the summations over G 

′ alone, only terms satisfying G 

′′ = G 

′ 
o not vanish. Thus, the final set of equations becomes ∑ 

G ′ 
{ ̇ x 1 ( G 

′ )[( ̂  ς (G − G 

′ ) + 2 ̂  μ(G − G 

′ ))(G 

′ + k ) 1 (G + k ) 1 

+ μ̄(G − G 

′ )(G 

′ + k ) 2 (G + k ) 2 + ˆ μ(G − G 

′ )(G 

′ + k ) 3 (G + k ) 3 

− ω 

2 ρ(G − G 

′ )] + 

˙ x 2 ( G 

′ )[ ̄ς (G − G 

′ )(G 

′ + k ) 2 (G + k ) 1 

+ ˜ μ(G − G 

′ )(G 

′ + k ) 1 (G + k ) 2 ] + 

˙ x 3 ( G 

′ )[ ̂  ς (G − G 

′ )(G 

′ + k ) 3 

× (G + k ) 1 + ˆ μ(G − G 

′ )(G 

′ + k ) 1 (G + k ) 3 ] 

− ϕ(G 

′ ) ̃  d 2 (G − G 

′ )(G 

′ + k ) 1 (G + k ) 2 } + i ˙ p 0 (G )(G + k ) 1 = 0 , 

(C.6)

∑ 

G ′ 
{ ̇ x 1 ( G 

′ )[ ̃  μ(G − G 

′ )(G 

′ + k ) 2 (G + k ) 1 + ς̄ (G − G 

′ )(G 

′ + k ) 1 

× (G + k ) 2 ] + 

˙ x 2 ( G 

′ )[ ̃  μ(G − G 

′ )(G 

′ + k ) 1 (G + k ) 1 + ˜ ς (G − G 

′ ) 
× (G 

′ + k ) 2 (G + k ) 2 + ˜ μ(G − G 

′ )(G 

′ + k ) 3 (G + k ) 3 

− ω 

2 ρ(G − G 

′ )] + 

˙ x 3 ( G 

′ )[ ̄ς (G − G 

′ )(G 

′ + k ) 3 (G + k ) 2 

+ ˜ μ(G − G 

′ )(G 

′ + k ) 2 (G + k ) 3 ] − ϕ(G 

′ )[ ̃  d 2 (G − G 

′ )(G 

′ + k ) 1 

× (G + k ) 1 + d̄ 2 (G − G 

′ )(G 

′ + k ) 2 (G + k ) 2 + 

˜ d 2 (G − G 

′ ) 
× (G 

′ + k ) 3 (G + k ) 3 ] } + i ˙ p 0 (G )(G + k ) 2 = 0 , (C.7)

∑ 

G ′ 
{ ̇ x 1 ( G 

′ )[ ̂  μ(G − G 

′ )(G 

′ + k ) 3 (G + k ) 1 + ˆ ς (G − G 

′ )(G 

′ + k ) 1 

× (G + k ) 3 ] + 

˙ x 2 ( G 

′ )[ ̃  μ(G − G 

′ )(G 

′ + k ) 3 (G + k ) 2 
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B  

B  

B  

 

B  

C  
+ ς̄ (G − G 

′ )(G 

′ + k ) 2 (G + k ) 3 ] + 

˙ x 3 ( G 

′ )[ ̂  μ(G − G 

′ )(G 

′ + k ) 1 

× (G + k ) 1 + μ̄(G − G 

′ )(G 

′ + k ) 2 (G + k ) 2 + ( ̂  ς (G − G 

′ ) 
+ 2 ̂  μ(G − G 

′ ))(G 

′ + k ) 3 (G + k ) 3 − ω 

2 ρ(G − G 

′ )] 

− ϕ(G 

′ ) ̃  d 2 (G − G 

′ )(G 

′ + k ) 3 (G + k ) 2 } + i ˙ p 0 (G )(G + k ) 3 = 0 , 

(C.8) 

˙ 
 1 (G )(G + k ) 1 + 

˙ x 2 (G )(G + k ) 2 + 

˙ x 3 (G )(G + k ) 3 = 0 , (C.9) 

∑ 

G ′ 
{− ˙ x 1 ( G 

′ ) ̃  p e 2 (G − G 

′ )(G 

′ + k ) 2 (G + k ) 1 − ˙ x 3 ( G 

′ ) ̃  p e 2 (G − G 

′ ) 

× (G 

′ + k ) 2 (G + k ) 3 − ˙ x 2 ( G 

′ )[ ̃  p e 2 (G − G 

′ )(G 

′ + k ) 1 (G 

′ + k ) 1 

+ p̄ e 2 (G )(G 

′ + k ) 2 (G 

′ + k ) 2 + 

˜ p e 2 (G − G 

′ )(G 

′ + k ) 3 (G 

′ + k ) 3 ] 

− ϕ(G 

′ ) ε 0 [ ̃  χe (G − G 

′ )(G 

′ + k ) 1 (G 

′ + k ) 1 + χ̄e (G − G 

′ ) 
× (G 

′ + k ) 2 (G 

′ + k ) 2 + ˜ χe (G − G 

′ )(G 

′ + k ) 3 (G 

′ + k ) 3 ] } = 0 . 

(C.10) 

q. (30) is a matrix form equivalent to Eqs. (C.6) –(C.10) , whose

lock components are 

 

(1 , 1) 
G , G ′ = ( ̂  ς (G − G 

′ ) + 2 ̂  μ(G − G 

′ ))(G 

′ + k ) 1 (G + k ) 1 

+ μ̄(G − G 

′ )(G 

′ + k ) 2 (G + k ) 2 + ˆ μ(G − G 

′ ) 
× (G 

′ + k ) 3 (G + k ) 3 , (C.11) 

 

(1 , 2) 
G , G ′ = ς̄ (G − G 

′ )(G 

′ + k ) 2 (G + k ) 1 + ̃  μ(G − G 

′ )(G 

′ +k ) 1 (G + k ) 2 , 

(C.12) 

 

(1 , 3) 
G , G ′ = ˆ ς (G − G 

′ )(G 

′ + k ) 3 (G + k ) 1 + ̂  μ(G − G 

′ )(G 

′ +k ) 1 (G + k ) 3 , 

(C.13) 

 

(1 , 4) 
G , G ′ = − ˜ d 2 (G − G 

′ )(G 

′ + k ) 1 (G + k ) 2 , (C.14) 

 

(1 , 5) 
G , G ′ = (G + k ) 1 δGG ′ , (C.15) 

 

(2 , 1) 
G , G ′ = ς̄ (G − G 

′ )(G 

′ + k ) 1 (G + k ) 2 + ̃  μ(G − G 

′ )(G 

′ +k ) 2 (G + k ) 1 , 

(C.16) 

 

(2 , 2) 
G , G ′ = ˜ μ(G −G 

′ )(G 

′ + k ) 1 (G + k ) 1 + ̃  ς (G − G 

′ )(G 

′ + k ) 2 (G + k ) 2 

+ ˜ μ(G − G 

′ )(G 

′ + k ) 3 (G + k ) 3 , (C.17) 

 

(2 , 3) 
G , G ′ = ς̄ (G − G 

′ )(G 

′ + k ) 3 (G + k ) 2 + ̃  μ(G − G 

′ )(G 

′ + k ) 2 (G + k ) 3 ,

(C.18) 

 

(2 , 4) 
G , G ′ = − ˜ d 2 (G − G 

′ )[(G 

′ + k ) 1 (G + k ) 1 + (G 

′ + k ) 3 (G + k ) 3 ] 

− d̄ 2 (G − G 

′ )(G 

′ + k ) 2 (G + k ) 2 , (C.19) 

 

(2 , 5) 
G , G ′ = (G + k ) 2 δGG ′ , (C.20) 

 

(3 , 1) 
G , G ′ = ˆ μ(G − G 

′ )(G 

′ + k ) 3 (G + k ) 1 + ̂  ς (G − G 

′ )(G 

′ +k ) 1 (G + k ) 3 , 

(C.21) 

 

(3 , 2) 
G , G ′ = ς̄ (G − G 

′ )(G 

′ + k ) 2 (G + k ) 3 + ̃  μ(G − G 

′ )(G 

′ +k ) 3 (G + k ) 2 , 

(C.22) 
 

(3 , 3) 
G , G ′ = ˆ μ(G − G 

′ )(G 

′ + k ) 1 (G + k ) 1 + μ̄(G − G 

′ )(G 

′ +k ) 2 (G + k ) 2 

+ ( ̂  ς (G − G 

′ ) + 2 ̂  μ(G − G 

′ ))(G 

′ + k ) 3 (G + k ) 3 , (C.23) 

 

(3 , 4) 
G , G ′ = − ˜ d 2 (G − G 

′ )(G 

′ + k ) 3 (G + k ) 2 , (C.24) 

 

(3 , 5) 
G , G ′ = (G + k ) 3 δGG ′ , (C.25) 

 

(4 , 1) 
G , G ′ = − ˜ p e 2 (G − G 

′ )(G 

′ + k ) 2 (G + k ) 1 , (C.26) 

 

(4 , 2) 
G , G ′ = − ˜ p e 2 (G − G 

′ )[(G 

′ + k ) 1 (G + k ) 1 + (G 

′ + k ) 3 (G + k ) 3 ] 

− p̄ e 2 (G − G 

′ )(G 

′ + k ) 2 (G + k ) 2 , (C.27) 

 

(4 , 3) 
G , G ′ = − ˜ p e 2 (G − G 

′ )(G 

′ + k ) 2 (G + k ) 3 , (C.28) 

 

(4 , 4) 
G , G ′ = − ˜ χe (G − G 

′ )[(G 

′ + k ) 1 (G + k ) 1 + (G 

′ + k ) 3 (G + k ) 3 ] 

− χ̄e (G − G 

′ )(G 

′ + k ) 2 (G + k ) 2 , (C.29) 

 

(5 , 1) 
G , G ′ = (G + k ) 1 δGG ′ , (C.30) 

 

(5 , 2) 
G , G ′ = (G + k ) 2 δGG ′ , (C.31) 

 

(5 , 3) 
G , G ′ = (G + k ) 3 δGG ′ , (C.32) 

 

(1 , 1) 
G , G ′ = R 

(2 , 2) 
G , G ′ = R 

(3 , 3) 
G , G ′ = ρ(G − G 

′ ) , (C.33) 

locks which are not listed are zero. 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at 10.1016/j.ijsolstr.2017.07.021 . 
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