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a b s t r a c t 

Dielectric elastomers deform and stiffen when subjected to voltage. This work demonstrates how fiber 

composites made of incompressible dielectric elastomers exhibit complete band gaps—frequency ranges 

in which elastic wave propagation is prohibited, irrespective of its polarization and direction . To this end, 

we first analytically determine the quasi-static response of a wide class of composites to an electric field 

along the fibers. We then formulate and calculate incremental motions of general polarization propa- 

gating in the deformed composite, using a plane wave expansion approach. We numerically explore the 

dependency of the motion on the composite properties and electric field. We show how complete band 

gaps are tuned by adjusting the electric field, owing to resultant geometrical and physical changes. These 

results suggest that soft dielectrics can serve as tunable waveguides and filters. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The frequency spectrum of periodic media exhibits bands,

termed band gaps or stopbands , in which waves are forbidden from

propagating. Bragg band gaps result from the multiple scatter-

ing and subsequent interference of incoming and refracted waves.

When the periodic medium is elastic, this unusual phenomenon

corresponds to the decay of mechanical motions ( Kushwaha et al.,

1993 ). Accordingly, elastic band gaps can be employed to suppress

noise ( Shen et al., 2015 ), isolate undesired vibrations ( Olhoff et al.,

2012 ), or conversely guide waves ( Laude et al., 2005 ). To recall just

a few of the relevant experiments, we refer to Garcia-Pablos et al.

(20 0 0) ; Vasseur et al. (20 01) ; Wen et al. (2005) ; Schneider et al.

(2012) and Celli and Gonella (2015) . 

Composites having tunable gaps are desirable since they

can comply with changing needs at different frequencies. Pre-

stress/strain is one approach to tune gaps ( Bertoldi and Boyce,

2008; Feng and Liu, 2012; Huang et al., 2015; Barnwell et al.,

2016 ); this mechanism, however, is difficult to accurately and ac-

tively control. An alternative approach considers composites made

out of smart materials, whose physical properties are changed by

application of external stimuli, e.g. , composites comprising shape-

memory alloys ( Ruzzene and Baz, 1999 ), piezoelectrics ( Qian et al.,

2008; Huang et al., 2014; Degraeve et al., 2015 ), and magneto-
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ensitive ( Wang et al., 2009; Bayat and Gordaninejad, 2015 ) and

ielectric elastomers ( Gei et al., 2011; Shmuel and deBotton, 2012 ).

he latter class attracts special interest, since dielectric elastomers

re inexpensive, have low mass density, respond quickly, and

eversibly undergo large deformations by application of voltage

 Pelrine et al., 20 0 0b; Cohen and deBotton, 2016 ). We consider

ber composites made out of these materials, and demonstrate the

lectrostatic tunability of the corresponding band structure. Specif-

cally, we investigate incremental waves propagating on top of a

nite deformation caused by application of voltage. Our idea is

imple: as the electric field induces significant geometrical changes

nd modifies the constituent properties, the characteristics of the

ncremental motion and the resultant band gaps will change too.

his is demonstrated in what follows, with the help of numerical

xamples based on analytical modeling. 

As the sequel shows, we find complete gaps which are tunable

y bias electric fields; by complete we mean gaps which are in-

ependent of the propagation direction and the plane of the mo-

ion. Thus, by calculating also displacements which are perpen-

icular to the fibers, i.e. , accounting for the in-plane motion, this

ork complements the findings of Shmuel (2013) , who consid-

red only displacements along the fibers, i.e. , considered only anti-

lane waves. We note that Zhou and Chen (2013) have found elec-

rostatically tunable in-plane gaps in a fiber composite consisting

f a soft electrorheological phase; their model, however, uses lin-

ar elasticity, thereby not accounting for material and geometrical

onlinearities accompanying large deformations of elastomers. By

http://dx.doi.org/10.1016/j.ijsolstr.2016.10.002
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ontrast, using finite electroelasticity theory ( Dorfmann and Ogden,

005, 2010 ), we calculate the nonlinear deformation and subse-

uent motion of composites whose constituents are governed by

 general class of nonlinear constitutive relations. By deriving a so-

ution for this general class of material laws, we generalize the so-

ution of Shmuel (2013) , which was obtained for a specific model.

he important question of electromechanical stability ( Siboni and

astañeda, 2014; Siboni et al., 2014 ) is beyond the scope of this

ork, and to proceed we assume the deformation is in the stable

egime. Subsequently, superposed motions are analyzed when us-

ng the Gent model ( Gent, 1996 ). We note that the counterpart of

he in-plane analysis for the uncoupled problem was never carried

ut, i.e. , for finitely deformed fiber composite comprising purely

lastic incompressible phases, a fortiori for the coupled problem

e address. We also note that in deriving forthcoming benchmark

esults, our idealized model neglects viscoelasticity. While this as-

umption is reasonable for silicones, viscoelasticity in acrylics is

ignificantly more severe ( Kornbluh and Pelrine, 2008 ). 

The paper is organized as follows. Section 2 reviews the nec-

ssary theory to model motions of finitely deformed composites

ade out of soft dielectrics ( Toupin, 1956; deBotton et al., 2007;

uo et al., 2008; Castañeda and Siboni, 2012; Liu, 2013; Lopez-

amies, 2014 ). This theory is employed in Section 3 to analyti-

ally determine a voltage-induced deformation of a fiber compos-

te whose phase behaviors are governed by general electroelastic

aws. In Section 4 we formulate the equations governing incremen-

al motions of general polarization propagating in the deformed

lane. We develop a numerical generalized eigenvalue problem for

 solution of the resultant equations, using a plane wave expan-

ion approach ( Kushwaha et al., 1993 ). Making use of numerical

xamples, Section 5 explores the band diagram of fiber composites

hose mechanical response is Gentian ( Gent, 1996 ). Specifically,

e investigate the dependency of the diagram on the geometrical,

lectrical and mechanical properties, and—most significantly—the

lectric field. We summarize our main results and conclusions in

ection 6 . 

. Dynamics of electroelastic composites 

Consider a deformable body composed of N homogeneous di-

lectric phases, and surrounded by vacuum. When no loads are

pplied, the body occupies the volume �0 ⊂ R 

3 in a reference con-

guration, and is bounded by ∂�0 . By application of mechani-

al and/or electric loads, material points X ∈ �0 at time t in the

ime interval I ∈ R , are mapped by a twice-differentiable defor-

ation function χ : �0 × I → R 

3 , to their current position x =
( X , t ) . Thereby, the current configuration of the body � and cur-

ent boundary ∂� are defined. The gradient of the deformation

s denoted by F = ∇ X χ := ∂ χ/∂X . Line, area and volume elements

n the neighborhood of X are denoted with d X , d A , and d V , re-

pectively. These are mapped to their counterparts in the current

onfiguration d x , d a and d v according to d x = F d X , n d a = JF −T N d A

nd d v = Jd V, where J ≡ det F > 0 , and N and n are unit normals of

eferential and deformed area elements, respectively. The composi-

ions C = F T F , b = FF T are termed the right and left Cauchy-Green

train tensors, respectively, and serve as strain measures. 

The presence of charge in the current configuration is accompa-

ied by an electric field e and an electric displacement field d . The

onstitutive behavior of the body dictates the relation between the

elds; in vacuum they are linearly related via the permittivity ε0 .

axwell equations governing these fields read 

 · d = 0 , ∇ × e = 0 , (1) 

here ∇ · ( • ) and ∇ × ( • ) are the divergence and curl operators,

espectively, evaluated in � with respect to x . The form of the first

f Eq. (1) is due to the absence of body charge in dielectrics. The
econd of Eq. (1) tacitly uses an electrostatic approximation, ap-

ropriate when at the considered frequencies, the length of the

echanical waves is significantly shorter than its electromagnetic

ounterpart. 

Accounting for coupling between elastic and electric interac-

ions, the balance of linear momentum in terms of the total stress

ensor σ is ( Dorfmann and Ogden, 2005 ) 

 · σ = ρχ,tt , (2) 

being the current mass density. 

Jump conditions across boundaries between adjacent phases m

nd f free of charge are written as 

� σ� n = 0 , � d � · n = 0 , � e � × n = 0 , (3) 

here � •� ≡ (•) (m ) − (•) ( f ) ; herein and henceforth ( • ) ( p ) denotes

he value of ( • ) in phase p . Jump conditions at the outer bound-

ry between the body and the vacuum read 

( σ − σ� ) n = t m 

, ( d − d 

� ) · n = −w e , ( e − e � ) × n = 0 , (4) 

here t m 

is a prescribed mechanical traction, w e is a surface

harge density, and ( • ) � denotes fields in vacuum. Specifically, σ� 

s known as the Maxwell stress, given by 

� = ε0 

[ 
e � � e � − 1 

2 

( e � · e � ) I 
] 
. (5) 

 Lagrangian formulation uses the following pull-backs of the gov-

rning fields 

 = J σF −T , D = JF −1 d , E = F T e . (6)

e refer to P, D , and E as the total first Piola-Kirchhoff stress,

agrangian electric displacement, and Lagrangian electric field, re-

pectively. These satisfy a Lagrangian form of the governing Eqs.

2) in �0 , namely, 

 X · P = ρL χ,tt , ∇ X · D = 0 , ∇ X × E = 0 , (7)

here ρL = Jρ . Lagrangian counterparts of Eqs. (3) and (4) are 

( P − P 

� ) N = t M 

, ( D − D 

� ) · N = −w E , ( E − E 

� ) × N = 0 , (8) 

 P � N = 0 , � D � · N = 0 , � E � × N = 0 . (9) 

here t M 

d A = t m 

d a and w E d A = w e d a . 

An augmented energy density function �( F, D, X ) determines P

nd E according to ( Dorfmann and Ogden, 2005 ) 

 = 

∂�

∂F 
, E = 

∂�

∂D 

. (10)

f the material is incompressible, the first of Eq. (10) is replaced

ith 

 = 

∂�

∂F 
− p 0 F 

−T , (11)

here p 0 is a Lagrangian multiplier accounting for the kinematic

onstraint det F = 1 . 

Let the pair χ and D satisfy the static boundary-value problem.

he formulation of the equations governing superposed incremen-

al motions rests on small time-dependent elastic and electric dis-

lacements, denoted 

˙ χ( X , t ) and 

˙ D ( X , t ) , respectively. Herein and

n the sequel, we use superposed dots to denote increments. Linear

pproximations of Eq. (10) derived using Taylor series are 

˙ 
 = 𝓒 0 ̇

 F + p 0 F 
−T ˙ F T F −T − ˙ p 0 F 

−T + 𝓑 0 ̇
 D , ˙ E = 𝓑 

T 
0 ̇

 F + 𝓐 0 ̇
 D , (12)

here 
(
𝓑 

T 
0 

˙ F 
)

k 
= B 0 i jk 

˙ F i j , ˙ F = ∇ X ˙ χ. The tensors 𝓐 0 , 𝓑 0 and 𝓒 0 are

efined by the components 

 0 αβ = 

∂ 2 �

∂ D α∂ D β
, B 0 iαβ = 

∂ 2 �

∂ F iα∂ D β
, C 0 iαkβ = 

∂ 2 �

∂ F iα∂ F kβ
. (13)
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Fig. 1. Fiber composite made of dielectric elastomers (a) in the reference configuration; (b) in the deformed configuration, subjected to an electric field in the fiber direction; 

(c) when incremental motions are superposed. (d) Corresponding first irreducible Brillouin zone in the reciprocal space. 
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We can use the deformed configuration as an updated reference

configuration. To this end, we push-forward the linear approxima-

tions, and define 

� = J −1 ˙ P F T , ď = J −1 F ̇ D , ě = F −T ˙ E . (14)

The updated versions satisfy 

∇ · � = ρ ˙ x ,tt , ∇ · ď = 0 , ∇ × ě = 0 , (15)

where ˙ x ( x , t ) := 

˙ χ( X , t ) . In terms of the latter, the incremental in-

compressibility constraint is 

tr h = 0 , (16)

where h = ∇ ̇ x . Rewriting Eq. (12) with updated quantities provides

the compact form 

� = 𝓒 h + p 0 h 

T − ˙ p 0 I + 𝓑 ̌d , ě = 𝓑 

T h + 𝓐 ̌d , (17)

with 

A i j = JF −1 
αi 

A 0 αβF −1 
β j 

, B i jk = F jαB 0 iαβF −1 
βk 

, C i jkl = J −1 F jαC 0 iαkβF lβ . 

(18)

3. Soft dielectric fiber composites under an axial electric field 

Determining the exact response of a soft dielectric is a difficult

task, on account of the corresponding coupled nonlinear equations.

These nonlinear coupled equations stem from the geometrical non-

linearity, material nonlinearity, and the coupling between the elec-

trical and mechanical fields. Nevertheless, we show that the fol-

lowing problem belongs to a class of problems which can be solved

exactly, independently of the specific form of the material consti-

tutive behavior. A catalog of such problems for homogeneous soft

dielectrics was given by Singh and Pipkin (1966) , when the defor-

mation and the electric field are postulated at the outset (see also

Bustamante and Ogden, 2006 ). We provide a solution for the prob-

lem of a fiber composite comprising transversely isotropic phases.

The fibers are aligned along the preferred direction, but otherwise

their geometry is arbitrary. The solution rests on the establishment

of piecewise uniform fields by proper boundary conditions (see

Benveniste and Dvorak, 1992 , in the piezoelectric counterpart). A

complete description of the problem and its solution is provided

next. 

Consider an incompressible composite made out of deformable

dielectric fibers (phase f ) embedded periodically in a different soft

dielectric matrix (phase m ). We assume that the fibers are in-

finitely long, and treat the composite as two-dimensional whose

corresponding fields are invariant with respect to the axial direc-

tion. We restrict attention to constituents whose material sym-

metry is initially transversely isotropic about the direction of the

fibers. In the reference configuration, the distance between cen-

ters of adjacent fibers is A ( Fig. 1 a). The composite is coated with

stretchable electrodes at the far upper and lower surfaces perpen-

dicular to the fibers. By creating a voltage difference V between

the electrodes, an electric field e evolves in the fibers direction.
he outstanding issue is to determine the resultant deformation

nd stress brought by the electric field. 

Before proceeding to the solution, we note that the placement

e address for the electrodes is different from the typical place-

ent considered, i.e. , in parallel to the direction of the fibers ( Lu

t al., 2012; Siboni and Castañeda, 2014; Lefèvre and Lopez-Pamies,

015 ). The motivation for the configuration we describe is to use

he fibers as scatterers for elastic waves propagating in the peri-

dicity plane. A realization of such in-plane arrangement of phases

s promoted by the rapid development of 3D printing technology.

 review on this topic by Raney and Lewis (2015) states that ”3D

rinting of nearly arbitrary, 3D mesoscale architectures can be printed

ith minimum feature sizes ranging from ∼ 100 nm to 100 μm from

ultiple classes of materials”. In particular, we refer to Creegan and

nderson (2014) , who demonstrated a proof of concept of dielec-

ric elastomer 3D printing in two materials using stereolithography.

Proceeding with the solution derivation, we begin by postulat-

ng a piecewise-homogeneous deformation. In a Cartesian coordi-

ate system in which x 2 is along the fibers and ( x 1 , x 3 ) is the peri-

dicity plane ( Fig. 1 b), the matrix representation of F in each phase

s 

 

(p) = diag 
[
λ(p) 

1 
, 
(
λ(p) 

1 
λ(p) 

3 

)−1 
, λ(p) 

3 

]
. (19)

y virtue of the transverse isotropy of the phases, F (p) is diagonal

n the coordinates employed. Further note that F (p) is compatible

ith the requirement det F (p) = 1 . Assuming perfect bonding be-

ween the phases, the stretch ratios in the fiber direction must be

he same, therefore 

λ(m ) 
1 

λ(m ) 
3 

)−1 = 

(
λ( f ) 

1 
λ( f ) 

3 

)−1 
. (20)

n account of symmetry in the geometry and boundary conditions

ith respect to the ( x 1 , x 3 ) plane, the in-plane stretches of each

hase are equal, i.e. , 

(p) 
1 

= λ(p) 
3 

. (21)

Eqs. (20) and (21) reveal that the overall deformation is homo-

eneous, such that 

 

(m ) = F ( f ) = diag [ λ, λ−2 , λ] . (22)

o proceed with calculating λ, the energy density for each phase is

equired; we assume these are of the form 

(p) = W 

(p) (I 1 ) + 

1 

2 ε(p) 

(
γ (p) 

0 
I 4 e + γ (p) 

1 
I 5 e + γ (p) 

2 
I 6 e 

)
, (23)

here I 1 = tr C , I 4 e = D · D , I 5 e = D · CD , and I 6 e = D · C 

2 D .

q. (23) states that the material response depends (perhaps

onlinearly) on I 1 through W 

( p ) ( I 1 ), and linearly on I 4 e , I 5 e and

 6 e through γ (p) 
0 

/ε( p ) , γ (p) 
1 

/ε( p ) and γ (p) 
2 

/ε( p ) , respectively. The

eneral form of the energy (23) agrees with the common approach

o model soft dielectrics, namely, augmenting a purely mechanical

art that captures the behavior of elastomers and depends on

 1 , with a part that accounts for the electromechanical coupling

n finite deformations. Popular models in rubber elasticity that
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a

∇

elong to the class described by W ( I 1 ) are the Arruda–Boyce

odel ( Arruda and Boyce, 1993 ), the Gent model ( Gent, 1996 ),

nd of course the neo-Hookean model. 1 The augmented part in

q. (23) captures dielectrics whose permittivity varies with strain

 Cohen et al., 2016 ), and which have been referred to as elec-

rostrictive ( Zhao and Suo, 2008 ). The specific augmented form in

q. (23) was employed, e.g. , by Dorfmann and Ogden (2005) and

ei et al. (2014) . By constraining 
∑ 

i γ
(p) 

i 
= 1 , we obtain the linear

elation d 

(p) = ε(p) e (p) when there is no deformation; we identify
( p ) with the dielectric constant, such that ε( p ) = ε( p ) 

r ε0 , and ε( p ) 
r 

s the relative dielectric constant of phase p . 

Applying Eq. (11) to the deformation (22) and the energies

23) provides the non-vanishing stress components 

(p) 
11 

= σ (p) 
33 

= μ̌(p) λ2 − p (p) 
0 

, (24a) 

(p) 
22 

= μ̌(p) λ−4 + ε(p) ξ (p) e (p) 2 

2 
− p (p) 

0 
, (24b) 

here μ̌(p) = 2 ∂W 

(p) 

∂ I 1 
and ξ (p) = 

λ8 γ (p) 
1 

+2 λ4 γ (p) 
2 

(λ8 γ (p) 
0 

+ λ4 γ (p) 
1 

+ γ (p) 
2 

) 2 
. At interfaces

etween the phases in the ( x 1 , x 3 )-plane, the last of Eq. (3) is sat-

sfied with 

 

(m ) 
2 

= e ( f ) 
2 

= e 2 . (25)

ote that the solution in (25) holds for any unit normal in the

 x 1 , x 3 ) plane, and therefore it is valid for any geometry of fibers

arallel to the x 2 -axis. Application of relation (10) to the model

23) with the deformation (22) delivers the following resultant

lectric displacement field in each phase 

 

( p ) 
2 

= 

(
λ4 γ (p) 

0 
+ γ (p) 

1 
+ λ−4 γ (p) 

2 

)−1 
ε(p) e 2 . (26) 

ince the electric displacement field in each phase is in the x 2 -

irection, the second of Eq. (3) is satisfied for any in-plane unit

ormal, and hence applies for any microstructure of unidirectional

bers. 

Traction continuity across the interfaces, together with an

xpansion-free boundary condition in the ( x 1 , x 3 ) plane implies 

(p) 
11 

= σ (p) 
33 

= 0 . (27) 

e recall that the diagonal deformation creates a triaxial state of

tress in the transversely isotropic phases, i.e. , σ (p) 
13 

= σ (p) 
31 

= 0 . Ac-

ordingly, satisfying Eq. (27) guarantees traction continuity at in-

erfaces defined by any unit normal in the ( x 1 , x 3 ) plane, and hence

he first of Eq. (3) is guaranteed independently of the shape of the

ber cross-section. The Lagrangian multiplier calculated through

q. (27) is 

p (p) 
0 

= μ̌(p) λ2 . (28) 

he solution is completed by satisfying the condition associated

ith the absence of mechanical forces at the electrodes, namely

¯22 = 0 , (29) 

here ( ̄•) = v ( f ) (•) ( f ) + v (m ) (•) (m ) , and v ( f ) and v (m ) = 1 − v ( f ) are

he volume fractions of the fiber and matrix phases, respectively.

pon substitution of Eq. (28) into Eq. (29) , in conjunction with Eq.

24b) , we find the relation between the in-plane stretch ratio λ
nd the current electric field e 2 , namely 

μ̌(I 1 ) 

ξ (λ) 

)(
λ2 − λ−4 

)
= ε̄e 2 2 . (30) 

elation (30) generalizes a result by Shmuel (2013) to composites

hose dependency on I 1 is general, and whose permittivity de-

ends on the deformation. 
1 For a discussion on the invariants in electroelasticity and anisotropic elasticity 

ee Bustamante and Shariff (2016) , Shariff (2011) and the references therein. 

 

s  
Before we proceed to analyze superposed motions, we empha-

ize that the determined homogeneous deformation is an exact so-

ution for the considered problem, as its corresponding fields sat-

sfy the governing equations and boundary conditions. Essentially,

e arrived at the counterpart of the result of Benveniste and Dvo-

ak (1992) in the piezoelectric case, therein “the existence of uni-

orm fields which can be generated by the application of certain me-

hanical and electrical boundary conditions in such composites is es-

ablished”. 

. Elastic waves in actuated soft dielectric fiber composites 

We are interested in characterizing general superposed mo-

ions propagating in the ( x 1 , x 3 ) plane of the deformed composite

 Fig. 1 c); by general we mean that both the in-plane ( ̇ x 1 and ˙ x 3 )

nd the anti-plane ( ̇ x 2 ) components of the incremental displace-

ent field do not vanish. By contrast, Shmuel (2013) considered

nly an anti-plane motion, thereby assumed that ˙ x 1 and ˙ x 3 are

ero. 

We begin by examining the resultant incompressibility con-

traint (16) , which reads 

˙ 
 1 , 1 + 

˙ x 3 , 3 = 0 . (31) 

herefore, the in-plane components can be derived from a stream

unction φ( x 1 , x 3 , t ), such that 

˙ x 1 = φ, 3 , ˙ x 3 = −φ, 1 . (32) 

he last of Eq. (15) implies that ě can also be derived from a scalar

otential, say ϕ( x 1, x 3 , t ), via 

ˇ = −∇ϕ. (33) 

n terms of the unknowns φ, ˙ x 2 and ϕ, the incremental governing

qs. (15) are 

(p) (x ) φ, 3 tt = 2( ̂  μ(p) (x ) φ, 13 ) , 1 + ( ̂  μ(p) (x ) φ, 33 ) , 3 

− ( ̂  μ(p) (x ) φ, 11 ) , 3 − ˙ p 0 , 1 (x , t) , (34a) 

(p) (x ) φ, 1 tt = 2 

(
ˆ μ(p) (x ) φ, 13 

)
, 3 

+ 

(
ˆ μ(p) (x ) φ, 11 

)
, 1 

− ( ̂  μ(p) (x ) φ, 33 ) , 1 + 

˙ p 0 , 3 (x , t) , (34b) 

(p) (x ) ̇ x 2 ,tt = ∇ T ·
(

˜ μ(p) (x ) ∇ T ˙ x 2 − ˜ d 2 
(p) 

(x ) ∇ T ϕ 

)
, (34c) 

 = ∇ T ·
(

− ˜ d 2 
(p) 

(x ) ∇ T ˙ x 2 − ˜ ε(p) (x ) ∇ T ϕ 

)
, (34d) 

here ∇ T (•) = i 1 (•) , 1 + i 3 (•) , 3 is the in-plane gradient operator,

 1 and i 3 are unit vectors in the x 1 and x 3 directions, respectively;

he quantities ˆ μ(p) (x ) , ˜ μ(p) (x ) , ˜ d 2 
(p) 

(x ) and ˜ ε(p) (x ) are listed in

ppendix B , and were derived using a specialization of the con-

titutive tensors given in Appendix A . Interestingly, Eqs. (34a) and

34b) decouple from Eqs. (34c) and (34d) , however they are cou-

led with one another. Accordingly, the in-plane mode decouples

rom the anti-plane mode and from the incremental electric field. 

To determine φ, Eqs. (34a) and (34b) are cross-differentiated

nd summed to obtain 

 T ·
(
ρ(p) (x ) ∇ T φ,tt 

)
= 4 

(
ˆ μ(p) (x ) φ, 13 

)
, 13 

+ 

(
ˆ μ(p) (x ) φ, 11 

)
, 11 

+ 

(
ˆ μ(p) (x ) φ, 33 

)
, 33 

−
(

ˆ μ(p) (x ) φ, 11 

)
, 33 

−
(

ˆ μ(p) (x ) φ, 33 

)
, 11 

. (35) 

Eqs. (34c) , (34d) and (35) are solved with a plane wave expan-

ion approach ( Kushwaha et al., 1993 ). We first expand ˆ μ, ˜ μ, ρ ,
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˜ ε and 

˜ d 2 in two-dimensional Fourier series on account of their in-

plane periodicity, and write 

ζ (x ) = 

∑ 

G ζ (G ) exp (i G · x ) , ζ = ˆ μ, ˜ μ, ρ, ̃  ε, ˜ d 2 , (36)

{ ζ ( G )} being the Fourier coefficients associated with the infinite

set of reciprocal lattice vectors { G }. The Bravais lattice of the de-

formed composite is based on a square unit cell of period a = λA .

The reciprocal lattice is of square-type too, and therefore { G | G =
2 π
a (n 1 i 1 + n 3 i 3 ) ; n 1 , n 3 ∈ N } . Inverting the Fourier transform pro-

vides 

ζ (G ) = 

{
ζ ( f ) v ( f ) + ζ (m ) (1 − v ( f ) ) ≡ ζ̄ G = 0 , 

(ζ ( f ) − ζ (m ) ) S(G ) ≡ �ζ S(G ) G 	 = 0 , 
(37)

where S(G ) = 

1 
a 2 

∫ ∫ 
a ( f ) exp ( −i G · x ) d a, and a ( f ) is the cross-

sectional area of the fiber phase. 

Next, by virtue of the Bloch theorem ( Kittel, 2005 ), we expand

the incremental fields φ, ˙ x 2 and ϕ in the form 

ϑ(x , t) = 

∑ 

G ′ 
ϑ( G 

′ ) exp [ i (G 

′ + k ) · x − iωt] , ϑ = φ, ˙ x 2 , ϕ , (38)

where ω is the angular frequency, k = k 1 i 1 + k 3 i 3 is the two-

dimensional Bloch wave vector, and the summation is carried over

the reciprocal lattice vectors. Expansions (37) and (38) are inserted

into Eqs. (34c) , (34d) and (35) , yielding {∑ 

G , G ′ 
[ ̃  μ(G − G 

′ ) ̇ x 2 (G 

′ ) − ˜ d 2 (G − G 

′ ) ϕ(G 

′ )](G 

′ + k ) · (G + G 

′ + k ) 

× exp [ i (G + G 

′ ) · x − iωt] − ω 

2 ρ(G − G 

′ ) ̇ x 2 (G 

′ ) 

× exp [ i (G + G 

′ ) · x − iωt] 

}
exp (i k · x ) = 0 , (39a)

{∑ 

G , G ′ 
[ − ˜ d 2 (G − G 

′ ) ̇ x 2 (G 

′ ) − ˜ ε(G − G 

′ ) ϕ(G 

′ )] × (G 

′ + k ) 

· (G + G 

′ + k ) exp [ i (G + G 

′ ) · x − iωt] 

}
exp (i k · x ) = 0 , (39b)

{∑ 

G , G ′ 
ˆ μ(G − G 

′ ) φ(G 

′ ) 

×
{

4(G 

′ + k ) 1 (G 

′ + k ) 3 (G + G 

′ + k ) 1 (G + G 

′ + k ) 3 

+ 

[
(G 

′ + k ) 2 1 − (G 

′ + k ) 2 3 

][
(G + G 

′ + k ) 2 1 − (G + G 

′ + k ) 2 3 

]}
× exp [ i (G + G 

′ ) · x − iωt] − ω 

2 ρ(G − G 

′ ) φ(G 

′ )(G 

′ + k ) 

· (G + G 

′ + k ) exp [ i (G + G 

′ ) · x − iωt] 

}
exp (i k · x ) = 0 . (40)

Since the above equations hold for any x , the sums in the curly

brackets must vanish. We then multiply these sums by exp (−i G 

′′ ·
x ) and integrate the result over the unit-cell. The orthogonality of

the Fourier functions implies that only terms for which G 

′′ = G + G 

′ 
remain in the summation. Thus, the final set of equations is ∑ 

G ′ 
( ̃  μ(G − G 

′ ) ̇ x 2 (G 

′ ) − ˜ d 2 (G − G 

′ ) ϕ(G 

′ ))(G 

′ + k ) · (G + k ) 

= ω 

2 
∑ 

G ′ 
ρ(G − G 

′ ) ̇ x 2 (G 

′ ) , (41a)

∑ 

G ′ 
(− ˜ d 2 (G − G 

′ ) ̇ x 2 (G 

′ ) − ˜ ε(G − G 

′ ) ϕ(G 

′ ))(G 

′ + k ) · (G + k ) = 0 , 

(41b)
 

G ′ 
ˆ μ(G − G 

′ ) φ(G 

′ ) 
{

4(G 

′ + k ) 1 (G 

′ + k ) 3 (G + k ) 1 (G + k ) 3 

+ 

[
(G 

′ + k ) 2 1 − (G 

′ + k ) 2 3 

][
(G + k ) 2 1 − (G + k ) 2 3 

]}
= ω 

2 
∑ 

G ′ 
ρ(G − G 

′ ) φ(G 

′ )(G 

′ + k ) · (G + k ) . (42)

Eqs. (41) and (42) are concisely written in matrix form as fol-

ows 

Q 

(1 , 1) Q 

(1 , 2) 

Q 

(2 , 1) Q 

(2 , 2) 

)[
˙ x 2 ( G 

′ ) 
ϕ( G 

′ ) 

]
= ω 

2 

(
R 

(1 , 1) 0 

0 0 

)[
˙ x 2 ( G 

′ ) 
0 

]
, (43)

φ( G 

′ ) = ω 

2 Rφ( G 

′ ) ; (44)

he components of Q, R, Q 

(1, 1) , Q 

(1, 2) , Q 

(2, 1) , Q 

(2, 2) and R (1, 1) are

iven in Appendix C . Eq. (43) implies that 

( G 

′ ) = −Q 

(2 , 2) −1 

Q 

(2 , 1) ˙ x 2 ( G 

′ ) . (45)

e substitute Eq. (45) back into Eq. (43) and obtain 

˜ 
 

˙ x 2 ( G 

′ ) = ω 

2 R 

( 1 , 1 ) ˙ x 2 ( G 

′ ) , (46)

here 

˜ 
 = Q 

(1 , 1) − Q 

(1 , 2) Q 

(2 , 2) −1 

Q 

(2 , 1) . (47)

qs. (44) and (46) constitute a generalized eigenvalue problem for

he eigenfrequencies ω, at a given wave vector k . It is sufficient

o consider only wave vectors within the irreducible first Brillouin

one, which defines the smallest region of unique wave propaga-

ion ( Kittel, 2005 ). For a square lattice, the periphery of the zone is

efined by the lines connecting the points � = ( 0 , 0 ) , X = ( π/a, 0 )
nd M = ( π/a, π/a ) , as illustrated in Fig. 1 d. Under certain condi-

ions, one can restrict attention to that periphery to determine the

ap boundaries, since there the gaps almost always attain their ex-

rema ( Harrison et al., 2007; Craster et al., 2012 ). This was found

o be true in similar problems, by scanning the interior of the zone

 Kushwaha et al., 1994; Vasseur et al., 1994 ). 

A numerical realization requires a truncation of the infinite-

imensional systems (44) and (46) , by using a finite subset of { G }.

n the following, we have found that 441 plane waves, correspond-

ng to 10 ≤ n 1 , n 3 ≤ 10, are sufficient for convergence. The nu-

erical scheme and forthcoming results were implemented using

olfram Mathematica 10. 

. Numerical investigation 

With the help of numerical examples, we explore the band

tructure dependency on the properties of the composite and on

he bias electric field. We consider circular fibers; the resultant

tructure function is S ( G ) = 2 πR 2 

A 2 
J 1 ( GλR ) 

GλR 
, where R is the referen-

ial fiber radius, and J 1 is the Bessel function of the first kind of

rder 1. We use the Dielectric Gent energy (DG) 

(p) 
DG 

= −μ(p) J (p) 
m 

2 

ln 

(
1 − I 1 − 3 

J (p) 
m 

)
+ 

1 

2 ε(p) 
I 5 e (48)

o model the constitutive behavior of each phase; μ( p ) correlates

ith the shear modulus in linear elasticity, where the constant

 

(p) 
m 

models the elastomeric stiffening near a limiting strain ( Gent,

996 ). This lock-up effect results from the finite extensibility of the

olymer chains. The augmented Gent model is widely accepted as

ne which qualitatively captures the behavior of dielectric elas-

omers ( Li et al., 2013; Zhou et al., 2014; Wang et al., 2016 ). 

We consider a matrix whose properties are 

(m ) = 10 0 0 kg / m 

3 , μ(m ) = 200 kPa , ε(m ) 
r = 3 , J (m ) 

m 

= 10 , 

(49)
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Fig. 2. Band diagrams of DG composite with circular fibers, subjected to the normalized electric bias fields (a) ˆ e = 0 , (b) ˆ e = 2 and (c) ˆ e = 3 . 5 . Normalized frequencies ˆ ω are 

shown as functions of the reduced wave vector k along �XM �, where the blue and red curves correspond to in-plane and anti-plane normalized frequencies, respectively. 

Blue, red and black regions correspond to the in-plane, anti-plane and complete gaps, respectively. The composite properties are ρ(m ) = ρ( f ) = 10 0 0 kg / m 

3 , μ(m ) = 20 0 kPa , 

ε(m ) 
r = 3 , J (m ) 

m = 10 , α = 10 , β = 10 , γ = 0 . 1 and v ( f ) = 0 . 5 (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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Fig. 3. Prohibited normalized frequencies as functions of the fiber volume fraction 

v ( f ) . Blue and red regions correspond to in-plane, anti-plane and complete gaps, re- 

spectively. The composite properties are ρ(m ) = ρ( f ) = 10 0 0 kg / m 

3 , μ(m ) = 20 0 kPa , 

ε(m ) 
r = 3 and J (m ) 

m = 10 , α = 10 , β = 10 and γ = 1 . The normalized bias electric field 

is ˆ e = 2 (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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hich are characteristic values for soft dielectrics ( Kornbluh and

elrine, 2008 ). Setting J m 

= 10 reflects a limiting uniaxial stretch of

.5. We fix ρ( f ) = ρ(m ) , and examine different composites by vary-

ng the remaining fiber properties. This is carried out by chang-

ng the fiber volume fraction v ( f ) , shear contrast parameter α =
( f ) /μ(m ) , permittivity contrast parameter β = ε( f ) /ε(m ) , and the

ocking contrast parameter γ = J 
( f ) 
m 

/J (m ) 
m 

. Note that when γ < 1 the

imiting strain of the fibers is smaller than the matrix, and hence

hey stiffen faster than the matrix; when γ > 1, the limiting strain

f the matrix is smaller than the fibers, and hence the matrix stiff-

ns faster than the fibers. 

We start with an exemplary composite characterized by α = 10 ,

= 10 , γ = 0 . 1 and v ( f ) = 0 . 5 . We plot its normalized eigenfre-

uencies ˆ ω = ωA/ 2 πc, where c = 

√ 

μ(m ) /ρ(m ) is the shear wave

elocity in the undeformed matrix, as functions of the reduced

ave vector k along �XM �, at different electric fields. Specifically,

igs. 2 a–c corresponds to ˆ e = 0 , 2 and 3.5, respectively. 

Herein and henceforth, blue, red and black regions denote

aps in the in-plane mode, anti-plane mode and their intersec-

ion, respectively. In other words, displacements perpendicular to

he fibers (resp. along the fibers) at frequencies associated with

he blue bands (resp. red bands) cannot propagate. Waves at fre-

uencies pertaining to the black bands are annihilated, irrespec-

ive of the direction of the displacements and the direction of the

avefront. Thus, such frequencies constitute complete band gaps.

he existence of complete gaps highly depends on the composi-

ion of the composite and the external load. Herein, a complete

ap is achieved at ˆ e = 3 . 5 , covering the normalized frequencies

 . 08 � ˆ ω � 3 . 11 . A comparison of Figs. 2 a–c reveals the effect of

he bias electric field: as ˆ e is enhanced, the spectrum is shifted to-

ards higher frequencies, while the number of gaps is increased

nd their width expands. Thus, the relative width of the gaps in

he spectrum, which we refer to as the gap density , increases.

ig. 2 also shows that gaps associated with the in-plane mode open

t higher frequencies than those associated with the anti-plane

ode. 

Fig. 3 shows the prohibited normalized frequencies as func-

ions of the fiber volume fraction v ( f ) at α = 10 , β = 10 , γ = 1 and

ˆ  = 2 . The in-plane and anti-plane gaps open at v ( f ) = 0 . 14 and

.35, respectively. The gaps close at v ( f ) = 0 . 61 and 0.76 for the

n-plane and anti-plane modes, respectively. The second in-plane

nd anti-plane gaps are the widest, with a width � ˆ ω = 0 . 19 , at

 

( f ) = 0 . 48 and 0.58, respectively. 

a  
Fig. 4 shows prohibited normalized frequencies as functions of

he shear contrast α. Specifically, Fig. 4 a corresponds to β = 10 ,

= 1 , v ( f ) = 0 . 5 and ˆ e = 2 ; Fig. 4 b corresponds β = 10 , γ = 0 . 1 ,

 

( f ) = 0 . 5 and ˆ e = 2 , and Fig. 4 c corresponds to β = 10 , γ = 0 . 1 ,

 

( f ) = 0 . 5 and ˆ e = 3 . 5 . Fig. 4 a demonstrates how the number and

idth of the anti-plane gaps increase monotonically with α. By

ontrast, the first in-plane gap widens up to a maximal value at

� 10, and closes at α � 17. In that interval, two additional in-

lane gaps open. Nevertheless, in-plane gap density decreases be-

ond α � 15. A further examination beyond the plotted range of

shows it increases again at α > 25. Contrarily, there is no de-

rease in the gap density when γ = 0 . 1 ( Fig. 4 b). Fig. 4 c shows

hat when γ = 0 . 1 and ˆ e = 3 . 5 , the dependency of the band dia-

ram on α is very weak; we postpone an explanation for the vari-

nce in the dependency on α to the end of the section. Fig. 4 a

hows that when there is no contrast in the locking parameter,

 minimal value of shear contrast is required for the opening of

he gaps. By contrast, when γ = 0 . 1 and ˆ e = 2 there are anti-plane

aps even when α = 1 ; when γ = 0 . 1 and ˆ e = 3 . 5 there are also

n-plane gaps when α = 1 . A complete gap is observed in Fig. 4 c,

hen β = 10 , γ = 0 . 1 , v ( f ) = 0 . 5 and ˆ e = 3 . 5 . At α = 1 , its width

nd middle frequency are � ˆ ω � 0 . 03 and ˆ ω � 3 . 11 , respectively.
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Fig. 4. Prohibited normalized frequencies as functions of the shear contrast α. Blue, red and black regions correspond to in-plane, anti-plane and complete gaps, respectively. 

The composite properties are ρ(m ) = ρ( f ) = 10 0 0 kg / m 

3 , μ(m ) = 20 0 kPa , ε(m ) 
r = 3 and J (m ) 

m = 10 , where (a) β = 10 , γ = 1 , v ( f ) = 0 . 5 , ˆ e = 2 , (b) β = 10 , γ = 0 . 1 , v ( f ) = 0 . 5 , 

ˆ e = 2 , and (c) β = 10 , γ = 0 . 1 , v ( f ) = 0 . 5 , ˆ e = 3 . 5 (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Prohibited normalized frequencies as functions of the permittivity contrast β . Blue, red and black regions correspond to in-plane, anti-plane and complete gaps, 

respectively. The composite properties are ρ(m ) = ρ( f ) = 10 0 0 kg / m 

3 , μ(m ) = 20 0 kPa , ε(m ) 
r = 3 and J (m ) 

m = 10 , where (a) α = 10 , γ = 1 , v ( f ) = 0 . 5 , ˆ e = 2 , (b) α = 10 , γ = 0 . 1 , 

v ( f ) = 0 . 5 , ˆ e = 2 , and (c) α = 10 , γ = 0 . 1 , v ( f ) = 0 . 5 , ˆ e = 3 . 5 (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Prohibited normalized frequencies as functions of the locking contrast 

γ . Blue, red and black regions correspond to in-plane, anti-plane and complete 

gaps, respectively. The composite properties are ρ(m ) = ρ( f ) = 10 0 0 kg / m 

3 , μ(m ) = 

200 kPa , ε(m ) 
r = 3 and J (m ) 

m = 10 , where (a) α = 10 , β = 10 , v ( f ) = 0 . 5 and ˆ e = 2 , and 

(b) α = 10 , β = 10 , v ( f ) = 0 . 5 and ˆ e = 3 . 5 (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this arti- 

cle.) 
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While at α = 20 it widens by about 36%, the middle frequency of

the gap is lower by about 10%. 

Fig. 5 shows prohibited normalized frequencies as functions of

the permittivity contrast β . Specifically, Figs. 5 a–c, correspond to

α = 10 , γ = 1 , v ( f ) = 0 . 5 and ˆ e = 2 , α = 10 , γ = 0 . 1 , v ( f ) = 0 . 5

and ˆ e = 2 , and α = 10 , γ = 0 . 1 , v ( f ) = 0 . 5 and ˆ e = 3 . 5 , respec-

tively. At γ = 1 ( Fig. 5 a), one in-plane gap and two anti-plane gaps

appear; these become wider and move towards higher frequencies

as β increases. Again, we postpone an explanation of this trend to

the end of the section. Figs. 5 b and c show that at γ = 0 . 1 , the

anti-plane gap density increases as β increases, regardless of the

value of ˆ e . At ˆ e = 3 . 5 , the in-plane gap density increases monoton-

ically with β; when ˆ e = 2 , it increases until β � 5, then decreases

until β � 8, and increases again beyond that value. Similar to the

dependency on shear contrast, the effect of β on the gap density

is more pronounced at γ = 1 and lower bias electric fields. Con-

trarily to the dependency on α, no minimal permittivity contrast

is required for the opening of the gaps. Moreover, when γ = 0 . 1 , a

complete gap opens at ˆ ω � 3 . 05 , when β � 7, at which λ � 1.33,

and increases monotonically with β . 

Fig. 6 illustrates prohibited normalized frequencies as functions

of the locking contrast γ . The fiber properties are α = 10 , β = 10 ,

v ( f ) = 0 . 5 . The electric bias field in Figs. 6 a and b is ˆ e = 2 and 3.5,

respectively. We observe a monotonic decrease in the anti-plane

gap density as a function of γ . The dependency of the in-plane

gaps is more complicated; it decreases at low and high values of

γ , and increases at the intervals 0.15 � γ � 0.4 and 0.5 � γ �
0.75, when ˆ e = 2 and 3.5, respectively. Two narrow complete gaps

appear in Fig. 6 a ( ̂ e = 2 ), across 2 . 96 � ˆ ω � 3 and 3 . 40 � ˆ ω � 3 . 44 .

When ˆ e = 3 . 5 ( Fig. 6 b), there is a single complete gap, starting
 T  
t 3 . 05 � ˆ ω � 3 . 15 , which closes when γ � 0.18. The central fre-

uency of the first anti-plane gap is ˆ ω � 1 . 07 , and its width is

ˆ ω � 0 . 17 . When ˆ e = 2 , it vanishes beyond the plotted range, at

� 4 and ˆ ω � 1 . 17 ; when ˆ e = 3 . 5 , it vanishes at γ � 1.25 and

ˆ  � 1 . 7 . There is no opening of new anti-plane gaps after the first

ap closes. 

From the tunability perspective, the most important depen-

ency is on the electric field; all other parameters are fixed once a

omposite is manufactured, while the electric field is adjustable.

his dependency is explored in Fig. 7 , which shows prohibited
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Fig. 7. Prohibited normalized frequencies as functions of the normalized electric 

bias field ˆ e . Blue, red and black regions correspond to in-plane, anti-plane and com- 

plete gaps, respectively. The composite properties are ρ(m ) = ρ( f ) = 10 0 0 kg / m 

3 , 

μ(m ) = 200 kPa , ε(m ) 
r = 3 and J (m ) 

m = 10 , where (a) α = 10 , β = 10 , γ = 1 , v ( f ) = 0 . 5 , 

and (b) α = 10 , β = 10 γ = 0 . 1 , v ( f ) = 0 . 5 . (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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m  
ormalized frequencies as functions of ˆ e , at representative values

= 10 , β = 10 and v ( f ) = 0 . 5 . Figs. 7 a and b correspond to γ = 1

nd 0.1, respectively. When γ = 0 . 1 , a complete gap opens at ˆ ω � 3

nd ˆ e � 2 . 85 , for which λ � 1.33, and increases monotonically with

ˆ  . Contrarily, when γ = 1 there are no complete gaps. As the elec-

ric field is enhanced, the gaps are shifted towards higher frequen-

ies, while their total density is increased by opening of new gaps

nd enlargement of existing ones. At ˆ e = 0 , regardless of the value

f γ , the width of the first anti-plane gap is � ˆ ω � 0 . 07 and its

iddle frequency is ˆ ω � 0 . 95 ; the width of the 1st in-plane gap

s � ˆ ω � 0 . 16 and its middle frequency is ˆ ω � 2 . 91 . At γ = 1 and

ˆ  = 5 , the width of the first anti-plane gap is � ˆ ω � 0 . 15 and its

iddle frequency is ˆ ω � 2 . 06 . The width of the first in-plane gap

s � ˆ ω � 0 . 34 and its middle frequency is ˆ ω � 6 . 28 (outside the

lotted range). Thus, for both modes, the width increases by ap-

roximately 115%, and the middle frequency increases about the

ame value. At γ = 0 . 1 and ˆ e = 5 , the width of the first anti-plane

ap is � ˆ ω � 0 . 18 and its middle frequency is ˆ ω � 1 . 14 . Thus, the

idth increases by approximately 155% and its middle frequency

ncreases by about 20%. At γ = 0 . 1 , the first in-plane gap closes at

ˆ  � 1 . 35 when ˆ ω � 3 . 4 , hence the middle frequency increases by

bout 10%. The width and central frequency of the lowest in-plane

ap at ˆ e = 5 are � ˆ ω � 0 . 38 and ˆ ω � 3 . 33 , respectively. The width

s approximately a third wider and 15% higher than the width at

ˆ  = 0 . 

To explain the different dependencies on the composite pa-

ameters and electric load, we recall that the fundamental quan-

ity that governs the gap density is the mismatch between the

mpedance of each phase. In the examples presented, the phases

ave the same mass density; this density does not vary with the

eformation, on account of incompressibility. Therefore, the mis-

atch depends on the pertinent stiffness, i.e., the quantities that

ultiply the spatial derivative of the displacement in the govern-

ng equations. Eq. (35) shows that ˆ μ(p) is that stiffness for the in-

lane mode. The identification of the corresponding stiffness for

he anti-plane mode is more complicated, as the displacement field

s coupled with the electric field through Eqs. (34c) and (34d) . This

oupling manifests itself in the components of ˜ Q in Eq. (47) . Inter-

stingly, we find that the contribution of Q 

(1 , 2) Q 

(2 , 2) −1 
Q 

(2 , 1) can-

els the part of Q 

(1, 1) which explicitly depends on e 2 
2 
. Moreover,

e find that this result applies to any material which depends on

 1 and I 5 e in a separable form, even when the dependency on I 1 
nd I 5 e is via any nonlinear function. Details regarding this result

re given in Appendix D . Accordingly, we arrive at the same stiff-

ess for the anti-plane mode, namely, ˆ μ(p) . We therefore define a
easure of mismatch, η, as 

:= 

1 

2 

(
˜ α + ˜ α−1 

)
, (50) 

here 

˜ := 

ˆ μ( f ) 

ˆ μ(m ) 
= α

1 −
(
2 λ2 + λ−4 − 3 

)
/J (m ) 

m 

1 −
(
2 λ2 + λ−4 − 3 

)
/γ J (m ) 

m 

(51) 

s referred to as the instantaneous shear contrast. The role of α,

, γ and ˆ e in the evolution of the gap density becomes clearer—a

hange in these quantities modifies the stretch ratio λ non-linearly

ia 

 

αv ( f ) 

1 − 2 λ2 + λ−4 −3 

γ J (m ) 
m 

+ 

v (m ) 

1 − 2 λ2 + λ−4 −3 

J (m ) 
m 

) 

(λ2 − λ−4 ) = 

v ( f ) β + v (m ) 

ε(m ) 
ˆ e 2 , 

(52) 

nd, in turn, modifies η. This dependency is illustrated in Fig. 8 .

pecifically, Figs. 8 a–d show the measure of mismatch η, as a func-

ion of α, β , γ and ˆ e , respectively. The free parameters in each fig-

re are α = 10 , β = 10 , γ = 0 . 1 and v ( f ) = 0 . 5 , while the electric

ias field is ˆ e = 3 . 5 . The corresponding value of λ is showed on the

pper axes. 

We observe that η increases monotonically with α, β and ˆ e , in

greement with the increase in the gap density observed in Figs. 4,

 and 7 . Fig. 8 c shows that η decreases with γ , until η = 1 at γ
 8.5, beyond which η slightly increases. This decrease of η is in

greement with the closure of the gaps in Fig. 6 b. We observe that

he relative change in η correlates with the relative change in the

ap density—when the increment in η is small with respect to its

alue, the change in the gap density is barely noticeable ( Figs. 4 c

nd 8 a); when the increment in η is significant, a much greater

hange in the gap density is observed ( Figs. 7 b and 8 d). 

When the phases have the same locking parameter, i.e. , γ = 1 ,

he instantaneous shear contrast ˜ α is independent of the deforma-

ion and equals α. Accordingly, η and the gap density are indepen-

ent of β , ˆ e and λ. However, the whole spectrum is stretched with

he stiffening of the composite caused by the deformation. Accord-

ngly, the gaps in Figs. 5 a and 7 a are wider at large values of β
nd ˆ e , while their relative size in the frequency domain remains

he same. We refer the reader to video 1a in the supplementary

aterial online, illustrating the change of the corresponding spec-

rum as a function of ˆ e , when γ = 1 . This observation is in agree-

ent with the findings of Shmuel and Band (2016) for finitely de-

ormed laminates. When γ 	 = 1, the spectrum changes in an in-

ricate manner with the electric field, such that the order of the

igenmodes is changed. For instance, the third mode at α = 10 ,

= 10 , γ = 0 . 1 , v ( f ) = 0 . 5 and ˆ e = 0 between � and X becomes

he fourth mode when ˆ e � 1 . 45 . This shuffle in the ordering of the

igenmodes is accompanied by the closure of certain gaps and the

pening of others. We refer the reader again to video 1b, showing

he evolution of the pertinent spectrum as function of the electric

eld when γ = 0 . 1 ; therein, this transition is evident. Video 2 in

he supplementary material online revisits the in-plane band dia-

ram as a function of the electric field. Therein, the vertical axis

s scaled as follows. The normalized frequencies are divided by

he frequency of a chosen mode calculated at � for each applied

lectric field. Thus, videos 2a and 2b show the scaled frequencies

t γ = 1 and 0.1, respectively. Thereby, the stretching of the spec-

rum is factored out. Indeed, video 2a demonstrates that when η
s fixed ( γ = 1), the relative size of the gaps is fixed too, and the

idening of the gaps is only due to the stretching of the spec-

rum. By contrast, video 2a illustrates that when η changes non-

onotonically ( γ = 0.1), the relative size of the gaps changes non-

onotonically too. Moreover, we observe how the structure of the
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Fig. 8. The mismatch impedance η as a function of (a) the normalized electric bias field ˆ e , (b) the permittivity contrast β , (c) the shear contrast α, and (d) the locking 

parameter contrast γ . The free parameters in each Fig. are α = 10 , β = 10 , γ = 0 . 1 , v ( f ) = 0 . 5 and ˆ e = 3 . 5 . Corresponding in-plane stretch λ is shown on the top axes. 

Fig. 9. (a) Prohibited normalized frequencies as functions of the electric bias field 

ˆ e . Blue, red and black regions correspond to in-plane, anti-plane and complete gaps, 

respectively. (b) The mismatch impedance η as a function of the normalized electric 

bias field ˆ e . The corresponding in-plane stretch is shown on the top axis. The com- 

posite properties are ρ(m ) = ρ( f ) = 10 0 0 kg / m 

3 , μ(m ) = 20 0 kPa , ε(m ) 
r = 3 , J (m ) 

m = 10 , 

α = 10 , β = 10 , γ = 10 and v ( f ) = 0 . 5 (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

Fig. 10. Gap densities as functions of the impedance mismatch η. Blue, red and 

black curves correspond to the in-plane, anti-plane and complete gaps, respectively. 

The composite properties are ρ(m ) = ρ( f ) = 10 0 0 kg / m 

3 , μ(m ) = 20 0 kPa , ε(m ) 
r = 3 

and J (m ) 
m = 10 . (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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o

diagram changes in an intricate manner, through the shuffling of

the eigenmodes. 

In view of the above observations, we choose to illustrate in

Fig. 9 the correlation between η and the gap density, with the fol-

lowing example. We revisit the gap density as a function of ˆ e in

Fig. 9 a, this time with γ = 10 , and display corresponding values

of η and λ in Fig. 9 b. The properties of the composite are α = 10 ,

β = 10 , γ = 10 and v ( f ) = 0 . 5 . The gaps in Fig. 9 a are narrowed

with increasing values of ˆ e , until they close at ˆ e � 1 . 85 . This pro-

cess is associated with the reduction of η when ˆ e increases, as de-
icted in Fig. 9 b. The dependency of η on ˆ e is reversed beyond

ˆ  � 3 . 2 . This non-monotonicity results from a competition between

he initial shear contrast and the stiffening of the matrix. In other

ords, ˜ α = α > 1 when no electric field is applied, for which the

bers are stiffer than the matrix; by application of electric load,

he matrix stiffens faster than the fibers since γ > 1, and there-

ore the impedance mismatch reduces as ˜ α < α. At ˆ e � 3 . 2 , we

btain ˆ μ( f ) = ˆ μ(m ) and thus η = 1 . Beyond ˆ e � 3 . 2 , ˆ μ(m ) > ˆ μ( f ) 
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Fig. 11. Band diagrams of a composite made of Silicone CF19-2186 matrix and circular Polyurethane PT6100S fibers. The initial radius of the fibers is R = 25 μm , and their 

volume fraction is v ( f ) = 0 . 5 . The composite is subjected to the electric bias fields (a) e = 0 MV / m , (b) e = 100 MV / m , (c) e = 500 MV / m and (d) e = 10 0 0 MV / m . The in-plane 

(blue curves) and anti-plane (red curves) eigenfrequencies ω are shown as functions of the reduced wave vector k along �XM �. Blue, red and black regions correspond to 

in-plane, anti-plane and complete gaps, respectively (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 

Table 1 

Physical properties of Silicone CF19-2186 and polyurethane PT6100S. 

Material ρ μ εr J m Dielectric strength 

(kg/m 

3 ) (kPa) (MV/m) 

Silicone CF19-2186 1100 333 2 .8 46 .3 235 

Polyurethane PT6100S 1200 5667 7 6 .67 160 
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nd a mismatch in the impedance is created again. This mismatch,

owever, is not large enough to reopen gaps in that examined fre-

uency range. 

Fig. 10 displays the gap density as function of η, using its ap-

roximation over a truncated interval of frequencies. Specifically,

e have calculated the relative size of the gaps in an interval that

nds with the frequency of the highest eigenmode calculated at

. We observe that there exists a threshold value of η � 3, be-

ow which there are no gaps. The curve describing the density of

he anti-plane gaps is a monotonic function of η, with a decreasing

lope. By contrast, the in-plane gap density increases until η � 7.5,

hen decreases until η � 13, and then increases again. We have no

xplanation for the intermediate decrease; we speculate it is a re-

ult of the truncation of the frequency interval. We note that the

ensity of the complete gaps increases monotonically with η. 

We conclude the numerical investigation with a dimensional

xample, modeling the constituents with the properties of two

f the commercial products used in the seminal paper of Pelrine

t al. (20 0 0a ). Specifically, we use silicone CF19-2186 by Nusil to

odel the matrix, and polyurethane PT6100S by Deerfield to model

he fibers. The material properties are given in Table 1 ; therein,

he shear modulus, dielectric constant and dielectric strength—the

lectric field at which the material begins to conduct charge—were

aken from Pelrine et al. (20 0 0a ), the mass density is taken from

he website of the manufacturers Dotmar 2 and Nusil, 3 and the

ocking parameter was calculated using the elongation at failure

o estimate the limiting stretch. The fibers are taken with an initial

adius of R = 25 μm and a volume fraction of v ( f ) = 0 . 5 , for which

he referential lattice parameter is A � 6 6.0 6 μm. Fig. 11 displays

he dimensional eigenfrequencies ω as functions of the reduced

ave vector k along �XM �, at different electric fields. Specifically,

igs. 11 a–d correspond to e = 0 MV / m , 160MV/m, 500MV/m and

0 0 0MV/m, respectively. These electric fields induce the in-plane
2 http://www.dotmar.com.au . 
3 http://nusil.com . 

e  

t  

p  

I  
tretch ratios λ = 1 , 1.067, 1.602 and 1.986, respectively. The exis-

ence of band-gaps without the application of electric load is ob-

erved in Fig. 11 a. Therein, anti-plane gaps appear across the fre-

uencies 1.58 MHz � ω � 1.83 MHz, 2.25 MHz � ω � 2.74 MHz,

.24 MHz � ω � 3.36 MHz and 3.63 MHz � ω � 3.69 MHz;

hree in-plane gaps appear across the frequencies 5.07 MHz � ω 

 5.21 MHz, 5.39 MHz � ω � 5.51 MHz and 6.02 MHz � ω �
.54 MHz. The electric field considered in Fig. 11 b, e = 160 MV / m ,

orresponds to onset of the polyurethane electric breakdown ob-

erved in Pelrine et al. (20 0 0a ). Since the resultant stretch is rela-

ively small, there is only a minor change in the band diagram. 

Exploring electric loads beyond the dielectric strength reported

y Pelrine et al. (20 0 0a ) purportedly seems superfluous. However,

esearch conducted after the aforementioned early work shows

hat the dielectric strength can be increased in different ways,

uch as oil-encapsulation ( Lau et al., 2015 ), modification of the

lastomer synthesis at the molecular level ( Madsen et al., 2014;

015 ), and pre-stretching ( Kofod, 2008; Huang et al., 2012; Gatti

t al., 2014 ), which also improves actuation. Accordingly, we eval-

ate the band diagrams at greater electric fields and larger resul-

ant stretches in Figs. 11 c and 11 d. At e = 500 MV / m and resultant

tretch λ = 1 . 602 ( Fig. 11 c), the anti-plane gap-density increases,

hile the in-plane gap-density decreases. The first anti-plane gap

overs now the frequencies 1.64 MHz � ω � 1.94 MHz, while the

rst in-plane gap is across the frequency range 5.68 MHz � ω 

 5.80 MHz. Thus, the gaps are shifted towards higher frequen-

ies, while the anti-plane gap widens, and the in-plane gap be-

omes more narrow. At e = 10 0 0 MV / m and the significant resul-

ant stretch of λ = 1 . 986 , the gap-density of both modes further

ncreases. Moreover, a complete gap forms across the frequencies

.36 MHz � ω � 5.37 MHz. 

. Concluding remarks 

Motivated by industrial demand for active isolators and wave

irectors, we have explored the tunability of stopbands in elec-

roactive fiber composites. Our investigation comprises the follow-

ng steps and results. We have analytically determined the static

esponse of soft incompressible dielectric fiber composites to an

lectric field along the fibers. Our solution holds for arbitrary fiber

ross-sections, and any phases which are constitutively nonlin-

ar in the manner described by Eq. (23) . Thereby, we generalize

he result of Shmuel (2013) , by accounting for materials whose

ermittivity changes with deformations, and their dependency on

 is general. Subsequently, we have formulated the equations
1 

http://www.dotmar.com.au
http://nusil.com
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governing general linear motions propagating in the deformed

composite, thus complementing the anti-plane analysis in Shmuel

(2013) . We have found that the anti-plane component of the dis-

placement and the electric perturbation are coupled with each

other, however decouple from the in-plane components of mo-

tion. Employing a plane wave expansion approach, we have de-

rived a generalized eigenvalue system to determine the motion

and the electric perturbation. We have explored numerical solu-

tions of this system, to study how the band structure depends on

the constituent properties and on the electrostatic field. To account

for the finite extensibility of the polymer chains, we have used

the augmented Gent energy when modeling the phases. The aug-

mented Gent model uses three parameters: shear modulus, per-

mittivity constant, and locking parameter; our results show that

the band structure changes with the contrast between the shear

modulus and permittivity constants of the phases, and correlates

with η—an instantaneous measure of impedance mismatch. The

bias electric field modifies η; accordingly, the bias field renders

the band gaps tunable, by shifting them towards higher frequen-

cies, and widening or narrowing the width, depending on the con-

trast between the locking parameter of each phase. Thus, when the

limiting strain of the matrix is smaller than the limiting strain of

the fibers, the band diagram evolves in a complicated manner with

the applied electric field, due to a competition between the ini-

tial shear contrast and the rapid stiffening of the matrix. Our main

finding is the existence of complete gaps, independent of the di-

rection and plane of motion, at certain compositions and electric

loadings. Together with previous works ( e.g., Shmuel and deBotton,

2013; Shmuel, 2015 ), the results above suggest the use of soft di-

electrics as tunable waveguides and filters. 
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Appendix A 

The components of the constitutive tensors 𝓐 , 𝓑 and 𝓒 cor-

responding to the constitutive law (23) are (see, e.g. , Gei et al.,

2014 ) 

A 

(p) 
i j 

= 

1 

ε(p) ( x ) 
ε −1 

i j 
(A.1)

B 

(p) 
i jk 

= γ1 (δ jk ε in e n + ε jn e n δik ) 

+ γ2 (δik b jm 

ε mn e n + b jk ε in e n + b ik ε jn e n + δ jk b im 

ε mn e n ) , 

(A.2)

C 

(p) 
i jkl 

= ς̌ 

(p) (x ) b i j b kl + μ̌(p) (x ) δik b jl + γ1 ε
(p) (x ) δik ε jn e n ε ls e s 

+ γ2 ε
(p) (x ) δik (ε ln e n b jm 

+ ε jn e n b lm 

) ε ms e s 

+ γ2 ε
(p) (x )(b jl ε kn e n + b jk ε ln e n ) ε is e s 

+ γ2 ε
(p) (x )(b il ε kn e n + b ik ε ln e n ) ε js e s , (A.3)

where ς̌ 

(p) ( x ) = 4 
∂ 2 W 

(p) ( x ) 

∂ I 2 
1 

and μ̌(p) ( x ) = 2 
∂W 

(p) ( x ) 
∂ I 1 

. 

Appendix B 

The quantities ˆ μ(p) (x ) , ˜ μ(p) (x ) , ˜ d 2 
(p) 

(x ) and ˜ ε(p) (x ) abbreviate

the following expressions 

ˆ μ(p) (x ) = μ̌(p) ( x ) λ2 , (B.1)
˜ (p) (x ) = ˆ μ(p) (x ) 

+ 

(
λ10 γ (p) 

2 

( ̂  γ (p) ) 2 
− λ2 (γ (p) 

2 
(1 + λ6 ) + γ (p) 

1 
λ4 ) 2 

( ̂  γ (p) ) 2 (γ (p) 
2 

λ4 + γ (p) 
1 

λ2 + γ (p) 
0 

) 

)
× ε(p) (x ) e 2 2 , (B.2)

˜ 
 2 

(p) 
(x ) = 

( (
γ (p) 

2 

(
λ6 + 1 

)
+ γ (p) 

1 
λ4 

)
λ2 

(
γ (p) 

2 
λ4 + γ (p) 

1 
λ2 + γ (p) 

0 

)
) 

ε(p) ( x ) e 2 , (B.3)

˜ (p) (x ) = 

λ2 (
γ (p) 

0 
+ λ2 γ (p) 

1 
+ λ4 γ (p) 

2 

)ε(p) (x ) , (B.4)

here ˆ γ (p) = λ8 γ (p) 
0 

+ λ4 γ (p) 
1 

+ γ (p) 
2 

. When specialized to the DG

odel, we have 

ˆ (p) (x ) = 

λ2 μ(p) ( x ) 

1 − 2 λ2 + λ−4 −3 

J (p) 
m ( x ) 

, (B.5)

˜ (p) (x ) = ˆ μ(p) (x ) − ε(p) (x ) e 2 2 , (B.6)

˜ 
 2 

(p) 
(x ) = ε(p) (x ) e 2 = d (p) 

2 ( x ) , (B.7)

˜ (p) (x ) = ε(p) (x ) . (B.8)

ppendix C 

The components Q G , G ′ , R G , G ′ , Q 

(1 , 1) 
G , G ′ , Q 

(1 , 2) 
G , G ′ , Q 

(2 , 1) 
G , G ′ , Q 

(2 , 2) 
G , G ′ , R 

( 1 , 1 )
G , G ′ 

re 

 G , G ′ = 4 ̂  μ(G − G 

′ )(G 

′ + k ) 1 (G 

′ + k ) 3 (G + k ) 1 (G + k ) 3 

+ 4 ̂  μ(G − G 

′ ) 
[
(G 

′ + k ) 2 1 − (G 

′ + k ) 2 3 

]
×

[
(G + k ) 2 1 − (G + k ) 2 3 

]
, (C.1)

 G , G ′ = ρ(G − G 

′ )(G 

′ + k ) · (G + k ) , (C.2)

 

(1 , 1) 
G , G ′ = ˜ μ(G − G 

′ )(G 

′ + k ) · (G + k ) , (C.3)

 

(1 , 2) 
G , G ′ = − ˜ d 2 (G − G 

′ )(G 

′ + k ) · (G + k ) , (C.4)

 

(2 , 1) 
G , G ′ = Q 

(1 , 2) 
G , G ′ , (C.5)

 

(2 , 2) 
G , G ′ = − ˜ ε(G − G 

′ )(G 

′ + k ) · (G + k ) , (C.6)

 

(1 , 1) 
G , G ′ = ρ(G − G 

′ ) . (C.7)

ppendix D 

Consider an augmented energy of the form 

= W 1 ( I 1 ) + W 5 ( I 5 e ) , (D.1)

uch that W 1 ( I 1 ) and W 5 ( I 5 e ) are nonlinear functions of I 1 and I 5 e ,

espectively. Application of Eqs. (6) , (10) , and (11) provides 

 = 

∂�

∂D 

= ε̌−1 CD , (D.2)

 = 

∂�

∂F 
= μ̌F + ε̌−1 FD � D − p 0 F 

−T , (D.3)

 = ε̌−1 d , (D.4)

= ̌μb + ε̌e � e − p 0 I , (D.5)

http://dx.doi.org/10.13039/501100001742
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here ε̌−1 = 2 
∂W 5 
∂ I 5 e 

. Application of Eqs. (12) and (18) provides 

 i j = �ε̌2 e i e j + 

1 

ε̌
δi j , (D.6) 

 i jk = �ε̌3 e i e j e k + (e i δ jk + e j δik ) , (D.7) 

 i jkl = ς b i j b kl + μ̌δik b jl + �ε̌4 e i e j e k e l + ε̌e j e l δik , (D.8) 

here � = 4 
∂ 2 W 5 

∂ I 2 
5 e 

and ς = 4 
∂ 2 W 1 

∂ I 2 
1 

. 

By deriving the solution obtained in Section 3 with phases

hose behavior is given by Eq. (D.1) , the relation between the elec-

ric field and the stretch becomes 

ˇ (p) (λ2 − λ−4 ) = ε̌(p) e 2 2 , (D.9) 

here we recall that ( ̄•) = v ( f ) (•) ( f ) + v (m ) (•) (m ) . The quantities

ˆ (p) (x ) , ˜ μ(p) (x ) , ˜ d 2 
(p) 

(x ) and ˜ ε(p) (x ) in the incremental govern-

ng equations accordingly read 

ˆ (p) (x ) = λ2 μ̌(p) (x 1 , x 3 ) , (D.10) 

˜ (p) (x ) = ˆ μ(p) (x 1 , x 3 ) + ε(p) (x 1 , x 3 ) e 
2 
2 , (D.11) 

˜ 
 2 

(p) 
(x ) = ε̌(p) (x 1 , x 3 ) e 2 , (D.12) 

˜ (p) (x ) = ε̌(p) (x 1 , x 3 ) . (D.13) 

e observe that in a truncated plane wave expansion of equa-

ions based on such quantities, the corresponding matrix product

 

(1 , 2) Q 

(2 , 2) −1 
Q 

(2 , 1) counters the part in Q 

(1, 1) that explicitly de-

ends on e 2 2 . We can show this analytically for finite numbers of

lane waves, using a symbolic computation in Wolfram Mathe-

atica 10. We were not able to prove it analytically for arbitrary

umbers of plane waves; numerical investigation, however, sup-

orts the conjecture that this cancelation holds for arbitrary num-

ers of waves, and, in particular, the number of waves we used in

ection 5 , namely, 441. 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at 10.1016/j.ijsolstr.2016.10.002 . 

eferences 

rruda, E.M. , Boyce, M.C. , 1993. A three-dimensional constitutive model for the large

stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41, 389–412 . 
arnwell, E.G., Parnell, W.J., Abrahams, I.D., 2016. Antiplane elastic wave prop-

agation in pre-stressed periodic structures; tuning, band gap switching and
invariance. Wave Motion 63, 98–110 . ISSN 0165–2125. http://dx.doi.org/10.

1016/j.wavemoti.2016.02.001 . URL http://www.sciencedirect.com/science/article/ 

pii/S01652125160 0 0111 . 
ayat, A., Gordaninejad, F., 2015. Dynamic response of a tunable phononic crystal

under applied mechanical and magnetic loadings. Smart Mater. Struct. 24 (6),
065027 . URL http://stacks.iop.org/0964-1726/24/i=6/a=065027 . 

enveniste, Y., Dvorak, G.J., 1992. Uniform fields and universal relations in piezoelec-
tric composites. J. Mech. Phys. Solids 40 (6), 1295–1312 . ISSN 0022–5096. http://

dx.doi.org/10.1016/0 022-5096(92)90 016-U . URL http://www.sciencedirect.com/

science/article/pii/0 02250969290 016U . 
ertoldi, K. , Boyce, M.C. , 2008. Wave propagation and instabilities in monolithic

and periodically structured elastomeric materials undergoing large deforma-
tions. Phys. Rev. B 78, 184107 . 

ustamante, R., Ogden, R.W., 2006. Universal relations for nonlinear electroelastic
solids. Acta Mech 182 (1), 125–140 . ISSN 1619–6937. URL http://dx.doi.org/10.

10 07/s0 0707-0 05-0290-7 . 
ustamante, R., Shariff, M.H.B.M., 2016. New sets of spectral invariants for electro-

elastic bodies with one and two families of fibres. Eur. J. Mech. A. Solids 58, 42–

53 . ISSN 0997–7538. http://dx.doi.org/10.1016/j.euromechsol.2016.01.006 . URL
http://www.sciencedirect.com/science/article/pii/S09977538160 0 0 073 . 

astañeda, P.P. , Siboni, M.H. , 2012. A finite-strain constitutive theory for electro-ac-
tive polymer composites via homogenization. Int. J. Non-Linear. Mech. 47 (2),

293–306 . 
elli, P., Gonella, S., 2015. Manipulating waves with lego® bricks: a versatile
experimental platform for metamaterial architectures. Appl. Phys. Lett. 107

(8), 081901. http://dx.doi.org/10.1063/1.4929566 . URL http://scitation.aip.org/ 
content/aip/journal/apl/107/8/10.1063/1.4929566 . 

ohen, N., Dayal, K., deBotton, G., 2016. Electroelasticity of polymer networks. J.
Mech. Phys. Solids . ISSN 0022–5096. http://dx.doi.org/10.1016/j.jmps.2016.03. 

022 . URL http://www.sciencedirect.com/science/article/pii/S0022509615303525 . 
ohen, N., deBotton, G., May 2016. Electromechanical interplay in de-

formable dielectric elastomer networks. Phys. Rev. Lett. 116, 208303.

doi: 10.1103/PhysRevLett.116.208303 . URL http://link.aps.org/doi/10.1103/ 
PhysRevLett.116.208303 . 

raster, R.V., Antonakakis, T., Makwana, M., Guenneau, S., Sep. 2012. Dangers of
using the edges of the Brillouin zone. Phys. Rev. B 86, 115130. doi: 10.1103/

PhysRevB.86.115130 . URL http://link.aps.org/doi/10.1103/PhysRevB.86.115130 . 
reegan, A. , Anderson, I. , 2014. 3D printing for dielectric elastomers. Proc. SPIE 9056 .

905629–905629. 

eBotton, G. , Tevet-Deree, L. , Socolsky, E.A. , 2007. Electroactive heterogeneous poly-
mers: analysis and applications to laminated composites. Mech. Adv. Mater.

Struct. 14, 13–22 . 
egraeve, S., Granger, C., Dubus, B., Vasseur, J.O., Thi, M.P., Hladky, A.-C., 2015.

Tunability of bragg band gaps in one-dimensional piezoelectric phononic crys-
tals using external capacitances. Smart Mater. Struct. 24 (8), 085013 . URL http:

//stacks.iop.org/0964-1726/24/i=8/a=085013. . 

orfmann, A. , Ogden, R.W. , 2005. Nonlinear electroelasticity. Acta. Mech. 174,
167–183 . 

orfmann, A. , Ogden, R.W. , 2010. Electroelastic waves in a finitely deformed elec-
troactive material. IM A. J. Appl. Math. 75, 603–636 . 

eng, R., Liu, K., 2012. Tuning the band-gap of phononic crystals with an initial
stress. Physica B 407 (12), 2032–2036 . ISSN 0921–4526. http://dx.doi.org/10.

1016/j.physb.2012.01.135 . URL http://www.sciencedirect.com/science/article/pii/ 

S0921452612001603. . 
arcia-Pablos, D., Sigalas, M., de Espinosa, F.R.M., Torres, M., Kafesaki, M., Garcia, N.,

May 20 0 0. Theory and experiments on elastic band gaps. Phys. Rev. Lett. 84,
4349–4352 . URL http://link.aps.org/doi/10.1103/PhysRevLett.84.4349 . 

atti, D., Haus, H., Matysek, M., Frohnapfel, B., Tropea, C., Schlaak, H.F., 2014. The
dielectric breakdown limit of silicone dielectric elastomer actuators. Appl. Phys.

Lett. 104 (5), 052905. http://dx.doi.org/10.1063/1.4863816 . URL http://scitation.

aip.org/content/aip/journal/apl/104/5/10.1063/1.4863816 . 
ei, M., Colonnelli, S., Springhetti, R., 2014. The role of electrostriction on the

stability of dielectric elastomer actuators. Int. J. Solids Struct. 51 (3–4), 848–
860 . ISSN 0020–7683. http://dx.doi.org/10.1016/j.ijsolstr.2013.11.011 . URL http:

//www.sciencedirect.com/science/article/pii/S0 0207683130 04460 . 
ei, M. , Roccabianca, S. , Bacca, M. , 2011. Controlling bandgap in electroactive poly-

mer-based structures. IEEE-ASME Trans. Mechatronics 16, 102–107 . 

ent, A.N. , 1996. A new constitutive relation for rubber. Rubber Chem. Technol. 69,
59–61 . 

arrison, J.M., Kuchment, P., Sobolev, A., Winn, B., 2007. On occurrence of spectral
edges for periodic operators inside the Brillouin zone. J. Phys. A 40 (27), 7597 .

URL http://stacks.iop.org/1751-8121/40/i=27/a=011 . 
uang, J., Shian, S., Diebold, R.M., Suo, Z., Clarke, D.R., 2012. The thickness and

stretch dependence of the electrical breakdown strength of an acrylic dielec-
tric elastomer. Appl. Phys. Lett. 101 (12), 122905. http://dx.doi.org/10.1063/

1.4754549 . URL http://scitation.aip.org/content/aip/journal/apl/101/12/10.1063/1. 

4754549 . 
uang, Y., Chen, W.Q., Wang, Y.S., Yang, W., 2015. Multiple refraction switches

realized by stretching elastomeric scatterers in sonic crystals. AIP Adv. 5
(2), 027138. http://dx.doi.org/10.1063/1.4914018 . URL http://scitation.aip.org/ 

content/aip/journal/adva/5/2/10.1063/1.4914018 . 
uang, Y., Zhang, C.L., Chen, W.Q., 2014. Tuning band structures of two-dimensional

phononic crystals with biasing fields. J. Appl. Mech. 81 (9) . 091008–091008. URL

http://dx.doi.org/10.1115/1.4027915 . 
ittel, C. , 2005. Introduction to Solid State Physics. John Wiley & Sons, Inc., Hobo-

ken, NJ . 
ofod, G. , 2008. The static actuation of dielectric elastomer actuators: how does

pre-stretch improve actuation? J. Phys. D 41 (21), 215–405 . 
ornbluh, R. , Pelrine, R. , 2008. Dielectric elastomers as electromechanical transduc-

ers. In: chapter High-Performance Acrylic and Silicone Elastomers (Chapter 4).

Elsevier, Oxford, UK, pp. 33–42 . 
ushwaha, M.S. , Halevi, P. , Dobrzynski, L. , Djafari-Rouhani, B. , 1993. Acoustic band

structure of periodic elastic composites. Phys. Rev. Lett. 71 (13), 2022–2025 . 
ushwaha, M.S. , Halevi, P. , Martínez, G. , Dobrzynski, L. , Djafari-Rouhani, B. , 1994.

Theory of acoustic band structure of periodic elastic composites. Phys. Rev. B
49 (4), 2313–2322 . 

au, G.-K., Tan, D. D., La, T.-G., 2015. Large-strain, high-stress tubular dielectric elas-

tomer actuator with high pre-stretch and oil encapsulation. URL http://dx.doi.
org/10.1117/12.2084531 . 

aude, V., Khelif, A., Benchabane, S., Wilm, M., Sylvestre, T., Kibler, B., Mussot, A.,
Dudley, J.M., Maillotte, H., Jan. 2005. Phononic band-gap guidance of acoustic

modes in photonic crystal fibers. Phys. Rev. B 71, 045107. doi: 10.1103/PhysRevB.
71.045107 . URL http://link.aps.org/doi/10.1103/PhysRevB.71.045107 . 

efèvre, V., Lopez-Pamies, O., 2015. The overall elastic dielectric properties of fiber-

strengthened/weakened elastomers. J. Appl. Mech. 82 (11) . 111009–111009. URL
http://dx.doi.org/10.1115/1.4031187 . 

i, T. , Keplinger, C. , Baumgartner, R. , Bauer, S. , Yang, W. , Suo, Z. , 2013. Gi-
ant voltage-induced deformation in dielectric elastomers near the verge of

snap-through instability. J. Mech. Phys. Solids 61 (2), 611–628 . 

http://dx.doi.org/10.1016/j.ijsolstr.2016.10.002
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0001
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0001
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0001
http://dx.doi.org/10.1016/j.wavemoti.2016.02.001
http://www.sciencedirect.com/science/article/pii/S0165212516000111
http://stacks.iop.org/0964-1726/24/i=6/a=065027
http://dx.doi.org/10.1016/0022-5096(92)90016-U
http://www.sciencedirect.com/science/article/pii/002250969290016U
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0005
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0005
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0005
http://dx.doi.org/10.1007/s00707-005-0290-7
http://dx.doi.org/10.1016/j.euromechsol.2016.01.006
http://www.sciencedirect.com/science/article/pii/S0997753816000073
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0008
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0008
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0008
http://dx.doi.org/10.1063/1.4929566
http://scitation.aip.org/content/aip/journal/apl/107/8/10.1063/1.4929566
http://dx.doi.org/10.1016/j.jmps.2016.03.022
http://www.sciencedirect.com/science/article/pii/S0022509615303525
http://dx.doi.org/10.1103/PhysRevLett.116.208303
http://link.aps.org/doi/10.1103/PhysRevLett.116.208303
http://dx.doi.org/10.1103/PhysRevB.86.115130
http://link.aps.org/doi/10.1103/PhysRevB.86.115130
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0013
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0013
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0013
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0013
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0014
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0014
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0014
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0014
http://stacks.iop.org/0964-1726/24/i=8/a=085013
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0016
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0016
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0016
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0017
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0017
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0017
http://dx.doi.org/10.1016/j.physb.2012.01.135
http://www.sciencedirect.com/science/article/pii/S0921452612001603
http://link.aps.org/doi/10.1103/PhysRevLett.84.4349
http://dx.doi.org/10.1063/1.4863816
http://scitation.aip.org/content/aip/journal/apl/104/5/10.1063/1.4863816
http://dx.doi.org/10.1016/j.ijsolstr.2013.11.011
http://www.sciencedirect.com/science/article/pii/S0020768313004460
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0022
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0022
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0022
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0022
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0023
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0023
http://stacks.iop.org/1751-8121/40/i=27/a=011
http://dx.doi.org/10.1063/1.4754549
http://scitation.aip.org/content/aip/journal/apl/101/12/10.1063/1.4754549
http://dx.doi.org/10.1063/1.4914018
http://scitation.aip.org/content/aip/journal/adva/5/2/10.1063/1.4914018
http://dx.doi.org/10.1115/1.4027915
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0028
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0028
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0029
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0029
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0030
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0030
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0030
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0031
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0031
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0031
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0031
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0031
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0032
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0032
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0032
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0032
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0032
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0032
http://dx.doi.org/10.1117/12.2084531
http://dx.doi.org/10.1103/PhysRevB.71.045107
http://link.aps.org/doi/10.1103/PhysRevB.71.045107
http://dx.doi.org/10.1115/1.4031187
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0035
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0035
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0035
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0035
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0035
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0035
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0035


36 R. Getz et al. / International Journal of Solids and Structures 113–114 (2017) 24–36 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S  

 

S  

 

 

S  

 

S  

S  

 

 

S  

 

S  

 

T

 

 

 

V  

 

 

W  

 

 

W  

 

W  

 

 

 

Z  

 

Z  

 

Z  
Liu, L., 2013. On energy formulations of electrostatics for continuum media. J.
Mech. Phys. Solids 61 (4), 968–990 . ISSN 0022–5096. http://dx.doi.org/10.

1016/j.jmps.2012.12.007 . URL http://www.sciencedirect.com/science/article/pii/
S0 0225096130 0 0 033 . 

Lopez-Pamies, O., 2014. Elastic dielectric composites: theory and application to
particle-filled ideal dielectrics. J. Mech. Phys. Solids 64, 61–82 . ISSN 0022–5096.

http://dx.doi.org/10.1016/j.jmps.2013.10.016 . URL http://www.sciencedirect.com/
science/article/pii/S0 0225096130 02251 . 

Lu, T., Huang, J., Jordi, C., Kovacs, G., Huang, R., Clarke, D.R., Suo, Z., 2012. Dielec-

tric elastomer actuators under equal-biaxial forces, uniaxial forces, and uniax-
ial constraint of stiff fibers. Soft Matter 8, 6167–6173 . URL http://dx.doi.org/10.

1039/C2SM25692D . 
Madsen, F.B., Yu, L., Daugaard, A.E., Hvilsted, S., Skov, A.L., 2014. Silicone elastomers

with high dielectric permittivity and high dielectric breakdown strength based
on dipolar copolymers. Polymer (Guildf) 55 (24), 6212–6219 . ISSN 0032–3861.

http://dx.doi.org/10.1016/j.polymer.2014.09.056 . URL http://www.sciencedirect.

com/science/article/pii/S0 0323861140 08623 . 
Madsen, F.B., Yu, L., Daugaard, A.E., Hvilsted, S., Skov, A.L., 2015. A new soft dielectric

silicone elastomer matrix with high mechanical integrity and low losses. RSC
Adv. 5, 10254–10259. doi: 10.1039/C4RA13511C . URL http://dx.doi.org/10.1039/

C4RA13511C . 
Olhoff, N., Niu, B., Cheng, G., 2012. Optimum design of band-gap beam structures.

Int J Solids Struct 49 (22), 3158–3169 . ISSN 0020–7683. http://dx.doi.org/10.

1016/j.ijsolstr.2012.06.014 . URL http://www.sciencedirect.com/science/article/pii/
S0020768312002715 . 

Pelrine, R. , Kornbluh, R. , Joseph, J. , Heydt, R. , Pei, Q.-B. , Chiba, A. , 20 0 0. High-field
deformation of elastomeric dielectrics for actuators. Mater. Sci. Eng. 11, 89–100 .

Pelrine, R. , Kornbluh, R. , Pei, Q.-B. , Joseph, J. , 20 0 0. High-speed electrically actuated
elastomers with strain greater than 100%. Science 287, 836–839 . 

Qian, Z. , Jin, F. , Li, F. , Kishimoto, K. , 2008. Complete band gaps in two-dimensional

piezoelectric phononic crystals with 1–3 connectivity family. Int. J. Solids Struct.
45 (17), 4748–4755 . 

Raney, J.R. , Lewis, J.A. , 2015. Printing mesoscale architectures. MRS Bull. 40,
943–950 . 

Ruzzene, M., Baz, A., 1999. Control of wave propagation in periodic composite rods
using shape memory inserts. J. Vib. Acoust. 122 (2), 151–159 . URL http://dx.doi.

org/10.1115/1.568452 . 

Schneider, D., Liaqat, F., Boudouti, E.H.E., Hassouani, Y.E., Djafari-Rouhani, B.,
Tremel, W., Butt, H.-J., Fytas, G., 2012. Engineering the hypersonic phononic

band gap of hybrid bragg stacks. Nano Lett. 12 (6), 3101–3108 . PMID:
22506610. doi: http://dx.doi.org/10.1021/nl300982d . URL http://dx.doi.org/10.

1021/nl300982d . 
Shariff, M.H.B.M., 2011. Physical invariants for nonlinear orthotropic solids. Int.

J. Solids Struct. 48 (13), 1906–1914 . ISSN 0020–7683. http://dx.doi.org/10.

1016/j.ijsolstr.2011.03.002 . URL http://www.sciencedirect.com/science/article/pii/
S0 0207683110 0 0989 . 

Shen, L., Wu, J.H., Liu, Z., Fu, G., 2015. Extremely low-frequency lamb wave band
gaps in a sandwich phononic crystal thin plate. Int. J. Mod. Phys. B 29 (05),

1550027. doi: 10.1142/S0217979215500277 . URL http://www.worldscientific.com/
doi/abs/10.1142/S0217979215500277 . 

Shmuel, G. , 2013. Electrostatically tunable band gaps in finitely extensible dielectric
elastomer fiber composites. Int. J. Solids Struct. 50 (5), 6 80–6 86 . 
hmuel, G., 2015. Manipulating torsional motions of soft dielectric tubes. J. Appl.
Phys. 117 (17), 174902. http://dx.doi.org/10.1063/1.4919668 . URL http://scitation.

aip.org/content/aip/journal/jap/117/17/10.1063/1.4919668 . 
hmuel, G., Band, R., 2016. Universality of the frequency spectrum of lami-

nates. J. Mech. Phys. Solids 92, 127–136 . ISSN 0022–5096. http://dx.doi.org/10.
1016/j.jmps.2016.04.001 . URL http://www.sciencedirect.com/science/article/pii/

S002250961630134X . 
hmuel, G. , deBotton, G. , 2012. Band-gaps in electrostatically controlled dielectric

laminates subjected to incremental shear motions. J. Mech. Phys. Solids 60,

1970–1981 . 
hmuel, G. , deBotton, G. , 2013. Axisymmetric wave propagation in finitely deformed

dielectric elastomer tubes. Proc. R. Soc. A 469 (2155) . 
iboni, M.H., Avazmohammadi, R., Castañeda, P.P., 2014. Electromechanical insta-

bilities in fiber-constrained, dielectric-elastomer composites subjected to all-
around dead-loading. Math. Mech. Solids doi: 10.1177/1081286514551501 . URL

http://mms.sagepub.com/content/early/2014/10/08/1081286514551501.abstract . 

iboni, M.H., Castañeda, P.P., 2014. Fiber-constrained, dielectric-elastomer compos-
ites: finite-strain response and stability analysis. J. Mech. Phys. Solids 68, 211–

238 . ISSN 0022–5096. http://dx.doi.org/10.1016/j.jmps.2014.03.008 . URL http://
www.sciencedirect.com/science/article/pii/S0 0225096140 0 0489 . 

ingh, M. , Pipkin, A.C. , 1966. Controllable states of elastic dielectrics. Arch. Rational.
Mech. Anal. 21, 169–210 . ISSN 0 0 03–9527. 

Suo, Z. , Zhao, X. , Greene, W.H. , 2008. A nonlinear field theory of deformable di-

electrics. J. Mech. Phys. Solids 56 (2), 467–486 . 
oupin, R.A. , 1956. The elastic dielectric. Arch. Rational. Mech. Anal. 5, 849–915 . 

Vasseur, J.O., Deymier, P.A., Chenni, B., Djafari-Rouhani, B., Dobrzynski, L., Prevost, D.,
Apr. 2001. Experimental and theoretical evidence for the existence of absolute

acoustic band gaps in two-dimensional solid phononic crystals. Phys. Rev. Lett.
86, 3012–3015 . URL http://link.aps.org/doi/10.1103/PhysRevLett.86.3012 . 

asseur, J.O. , Djafari-Rouhani, B. , Dobrzynski, L. , Kushwaha, M.S. , Halevi, P. , 1994.

Complete acoustic band gaps in periodic fibre reinforced composite materials:
the carbon/epoxy composite and some metallic systems. J. Phys. Condens. Mat-

ter 6 (42), 8759 . 
ang, F., Lu, T., Wang, T.J., 2016. Nonlinear vibration of dielectric elas-

tomer incorporating strain stiffening. Int. J. Solids Struct. 87, 70–80 . ISSN
0020–7683. http://dx.doi.org/10.1016/j.ijsolstr.2016.02.030 . URL http://www.

sciencedirect.com/science/article/pii/S0 0207683160 0 0925 . 

ang, Y. , Li, F. , Kishimoto, K. , Wang, Y. , Huang, W. , 2009. Wave band gaps in
three-dimensional periodic piezoelectric structures. Mech. Res. Commun. 36 (4),

461–468 . ISSN 0093–6413. 
en, J., Wang, G., Yu, D., Zhao, H., Liu, Y., 2005. Theoretical and experimental inves-

tigation of flexural wave propagation in straight beams with periodic structures:
application to a vibration isolation structure. J. Appl. Phys. 97 (11), 114907. http:

//dx.doi.org/10.1063/1.1922068 . URL http://scitation.aip.org/content/aip/journal/

jap/97/11/10.1063/1.1922068 . 
hao, X., Suo, Z., 2008. Electrostriction in elastic dielectrics undergoing large defor-

mation. J. Appl. Phys. 104 (12), 123530. http://dx.doi.org/10.1063/1.3031483 . URL
http://scitation.aip.org/content/aip/journal/jap/104/12/10.1063/1.3031483 . 

hou, J. , Jiang, L. , Khayat, R.E. , 2014. Electromechanical response and failure modes
of a dielectric elastomer tube actuator with boundary constraints. Smart Mater.

Struct. 23 (4), 045028 . 
hou, X. , Chen, C. , 2013. Tuning the locally resonant phononic band structures of

two-dimensional periodic electroactive composites. Physica B 431 (0), 23–31 . 

http://dx.doi.org/10.1016/j.jmps.2012.12.007
http://www.sciencedirect.com/science/article/pii/S0022509613000033
http://dx.doi.org/10.1016/j.jmps.2013.10.016
http://www.sciencedirect.com/science/article/pii/S0022509613002251
http://dx.doi.org/10.1039/C2SM25692D
http://dx.doi.org/10.1016/j.polymer.2014.09.056
http://www.sciencedirect.com/science/article/pii/S0032386114008623
http://dx.doi.org/10.1039/C4RA13511C
http://dx.doi.org/10.1039/C4RA13511C
http://dx.doi.org/10.1016/j.ijsolstr.2012.06.014
http://www.sciencedirect.com/science/article/pii/S0020768312002715
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0042
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0042
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0042
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0042
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0042
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0042
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0042
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0043
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0043
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0043
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0043
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0043
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0044
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0044
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0044
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0044
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0044
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0045
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0045
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0045
http://dx.doi.org/10.1115/1.568452
http://dx.doi.org/10.1021/nl300982d
http://dx.doi.org/10.1021/nl300982d
http://dx.doi.org/10.1016/j.ijsolstr.2011.03.002
http://www.sciencedirect.com/science/article/pii/S0020768311000989
http://dx.doi.org/10.1142/S0217979215500277
http://www.worldscientific.com/doi/abs/10.1142/S0217979215500277
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0050
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0050
http://dx.doi.org/10.1063/1.4919668
http://scitation.aip.org/content/aip/journal/jap/117/17/10.1063/1.4919668
http://dx.doi.org/10.1016/j.jmps.2016.04.001
http://www.sciencedirect.com/science/article/pii/S002250961630134X
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0053
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0053
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0053
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0054
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0054
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0054
http://dx.doi.org/10.1177/1081286514551501
http://mms.sagepub.com/content/early/2014/10/08/1081286514551501.abstract
http://dx.doi.org/10.1016/j.jmps.2014.03.008
http://www.sciencedirect.com/science/article/pii/S0022509614000489
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0057
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0057
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0057
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0057
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0058
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0058
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0058
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0058
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0059
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0059
http://link.aps.org/doi/10.1103/PhysRevLett.86.3012
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0061
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0061
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0061
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0061
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0061
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0061
http://dx.doi.org/10.1016/j.ijsolstr.2016.02.030
http://www.sciencedirect.com/science/article/pii/S0020768316000925
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0063
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0063
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0063
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0063
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0063
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0063
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0063
http://dx.doi.org/10.1063/1.1922068
http://scitation.aip.org/content/aip/journal/jap/97/11/10.1063/1.1922068
http://dx.doi.org/10.1063/1.3031483
http://scitation.aip.org/content/aip/journal/jap/104/12/10.1063/1.3031483
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0066
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0066
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0066
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0066
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0067
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0067
http://refhub.elsevier.com/S0020-7683(16)30293-1/sbref0067

	Voltage-controlled complete stopbands in two-dimensional soft dielectrics
	1 Introduction
	2 Dynamics of electroelastic composites
	3 Soft dielectric fiber composites under an axial electric field
	4 Elastic waves in actuated soft dielectric fiber composites
	5 Numerical investigation
	6 Concluding remarks
	 Acknowledgments
	 Appendix A
	 Appendix B
	 Appendix C
	 Appendix D
	 Supplementary material
	 References


