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Abstract

We determine the macroscopic features of thermal transport in heterogeneous conductors by generalizing
an exact, source-driven homogenization method originally developed for waves. The formulation
accommodates random or periodic media of finite or infinite extent, with or without pores. Our
homogenization shows that the effective heat flux and entropy are spatiotemporally nonlocal functions
of both the effective temperature and its gradient, and that the emergent bianisotropic cross-couplings
form an adjoint pair when the microscopic relations are self-adjoint. A spatially local approximation
highlights how the homogenized diffusion equation can become hyperbolic due to temporal nonlocality,
and that the medium’s thermal impedance can become direction-dependent as captured by the bianisotropic
terms. In addition, we develop a retrieval method for one-dimensional deterministic composites, whose
results reinforce our conclusions.

1 Introduction

The transport of energy strongly depends on the inhomogeneities of the medium through which it propagates.
Here, we determine the macroscopic features of thermal energy transport in heterogeneous conductive
media by developing a homogenization method that relates appropriately averaged fields through the
effective properties of a fictitious homogeneous medium. Our method reveals effective behavior that
differs fundamentally from the microscopic one. Notably, our method rigorously identifies macroscopic
cross-couplings between thermodynamic fields that are microscopically independent; and, under certain
conditions, predicts finite speed of heat propagation, as detailed in subsequent sections.

Homogenization methods provide effective models aimed at capturing the macroscopic behavior of
heterogeneous media [1, 2], often using asymptotic series expansions based on some scale separation
assumptions [3–5]. In contrast with these asymptotic methods, Willis introduced a method for elastic
waves that is applicable to all wavelengths and frequencies [5–10], revealing macroscopic transport phenomena
absent at the microscopic scale. Of particular relevance are the macroscopic cross-coupling between stress
and velocity, and between linear momentum and strain, now known as the Willis couplings [11–13].
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Since Willis’ method contains no approximations, it is regarded as exact [10]; and in fact its asymptotic
expansion coincides with results from asymptotic homogenization [5].

The applicability of the framework developed by Willis extends beyond elastic transport. In analogy
with Willis tensors in elastodynamics, applying this framework to electromagnetic composites reveals the
emergence of effective bianisotropic (magnetoelectric) tensor terms, even in centrosymmetric crystals
without bianisotropic constituents [8]. Pernas-Salomón and Shmuel [14] extended the framework to
dynamics of piezoelectric composites, which exhibit inherent cross-couplings of mechanical and electric
fields. Their unified theory revealed a macroscopic cross-coupling between the electric field and linear
momentum density, termed the electromomentum coupling, analogous to the Willis coupling in elastodynamics
[15–18].

Building on Willis’ homogenization framework, here we develop an exact homogenization method
for heat conduction in a general, time-independent, three-dimensional random medium of finite or infinite
extent, with or without pores. We provide a detailed derivation of the method, noting that a summary of the
conclusions of our exact approach is given in a companion paper [19]. Guided by these conclusions, we
also carried out a heuristic homogenization of a subwavelength element based on its scattering properties
in Ref. [19]. Here, we also elaborate on the derivation of this heuristic method.

Before presenting our formulations and numerics, we summarize prior work on thermal Willis couplings
and explain how our analysis advances the field. The first theoretical observation was by Torrent et
al. [20], who analyzed a one-dimensional medium whose properties are periodically modulated both in
space and time. Such time-dependent modulation is challenging and has yet to be realized in practice. The
infinite periodic nature of the problem enabled Torrent et al. to employ Floquet–Bloch homogenization
[11] and obtain an effective convection-diffusion equation with a coefficient analogous to the Willis
coupling. In contrast with our conclusions, the thermal Willis coupling that they identify vanishes in
the absence of time-modulation, and the effective differential equation has no second time derivative.
Xu et al. [21, 22] likewise employed Floquet–Bloch homogenization of a medium with periodically
spatiotemporal modulated properties. Their resultant governing equation differs from its counterpart in
Ref. [20], and includes a single thermal Willis coupling. These differences stem from the nonlocal nature
of the macroscopic response, which makes the homogenized description non-unique. We elaborate on this
issue in Sec. 2, and resolve it using a source-driven homogenization approach [8, 13, 14, 23, 24].

We recognize the entropy-temperature relationship as a second constitutive relation alongside Fourier’s
law, enabling us to identify two bianisotropic (cross-coupling) terms rather than one. This aspect is absent
in the homogenization schemes of Refs. [20–22], the last of which explicitly states that diffusion systems
admit a single constitutive relation.

We recall that our method is applicable not only to infinite periodic media but also to random, possibly
finite media. To treat randomness in the medium’s composition, we model its physical properties as
properties that vary not only with position but also within a sample space equipped with a probability
measure. The effective fields are accordingly defined by the ensemble mean; the formulation here is
more general than the one introduced in our companion paper, in that it allows for voids in the medium by
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employing a weighted mean in the averaging process [8, 25, 26]. Our formulation treats a periodic medium
as a particular case of a random medium by considering the corner of its periodic cell as a uniformly
distributed random variable. A key ingredient in the method is the Green’s function of the medium, which
accounts for boundary conditions of a possibly finite medium. [8, 25, 26].

Collectively, our homogenization principles yield a unique class of nonlocal effective relations that
remain self-adjoint when the microscopic relations are self-adjoint. In electrodynamics and (electro-
)elastodynamics, the effective differential equation preserves the hyperbolic character of the microscopic
equation. Here, by contrast, the effective equation includes both a second-order time derivative and a
mixed space-time derivative, and, under certain conditions, is hyperbolic, predicting finite-speed heat
propagation. While conclusive experimental evidence supporting this prediction is still lacking, we note
that the indications reported to date involve heterogeneous materials [27–29] . This inevitable outcome
of our homogenization procedure coincides with the objective of many phenomenological models, most
prominently Cattaneo’s model [30, 31].

Our results are presented in the following order. First, we explain in Section 2 the origins of non-
uniqueness in effective models and our approach to resolving it. In Section 3 we review the equations for
heat conduction in randomly heterogeneous materials and then derive our exact homogenization method
in Section 4. The main conclusions drawn from the resultant effective description are presented in
Section 5. These conclusions are reinforced by results of a retrieval method for the effective properties
of one-dimensional deterministic composites, which we develop in Section 6. Corresponding numerical
calculations appear in Section 7. We conclude this paper with a summary of our main results in Section 8.

This work is dedicated to the memory of our dear colleague, Dr. Sarah Benchabane, and her husband
Oliver and son Aaron.

2 Nonlocality and non-uniqueness of effective constitutive relations

This Section concisely explains the source of the difference between the homogenized equations of Torrent
et al. [20], Xu et al. [21, 22] and our equations. The explanation mirrors earlier discussions in other
contexts [8, 11, 13, 15], restated here for heat conduction.

In the Floquet–Bloch domain, spatiotemporal derivatives become multipliers in the transform variables;
dependence of the effective relations on these multipliers reflects nonlocality in space and time. Since these
variables commute with averaging, an ambiguity arises in defining the effective kinematic state variables.
For heat conduction, this means that the effective temperature and the effective temperature gradient—both
derived from the same potential—are no longer algebraically independent. Thus, in the absence of sources,
Floquet–Bloch analysis yields only a dispersion relation, leaving open the attribution of contributions
arising from heat flux and free energy. This ambiguity is removed if a heat source is admitted but
even then the constitutive relations cannot be defined uniquely, owing to the linear dependence between
temperature and temperature gradient. There exists, instead, an equivalence class of effective relations. To
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identify a unique representative of this class, we introduce a residual temperature-gradient field acting as a
source, analogous to the eigenstrain in Ref. [8]. In electromagnetics and (electro-)elastodynamics, works
show that this prescription allows for the proper identification of cross-couplings and yields constitutive
properties that satisfy physical constraints such as reciprocity and energy conservation [13, 16, 17, 32].
By contrast, these constraints are violated when the cross-coupling terms are erroneously lumped into the
direct couplings.

A second non-uniqueness arises when transforming back to the time domain, since the transform
time variable can be identified either as part of the kernel or as part of an effective kinematic rate field.
In elastodynamics, this translates to two classes of constitutive relations—one depending on effective
velocity and the other on effective acceleration [12, 33]. Here, the analogous choice is between effective
temperature and effective temperature rate.

3 Heat conduction in random composites

3.1 Governing equations

Consider a randomly inhomogeneous conducting material occupying a fixed domain Ω. As such, its
thermal conductivity κ and specific heat c are not only functions of the spatial coordinate x, but also of
some parameter, say α, in a sample space A endowed with a probability measure µ. A part ∂Ωθ of its
boundary ∂Ω is subjected to a prescribed non-random (sure) temperature increment θ0(x, t) for t > 0.
The complementary part ∂Ωq is subjected to an outward heat flux q · n = w(1)(x, α)q0(x, t), where q is
the heat flux, n is the outward normal to ∂Ω, q0(x, t) is sure but w(1)(x, α) represents the values on ∂Ωq

of a random field w(1)(x, α) ≥ 0, defined over (the closure of) Ω, with ensemble mean〈
w(1)

〉
=

∫
A
w(1)(x, α)dµ = 1. (3.1)

The body is also subjected to a prescribed heat input r(x, t, α) = w(1)(x, α)r0(x, t), where r0 is sure. The
motivation for including w(1) in the formulation is that the material could for example be porous and w(1)

could be chosen to be zero within the pores but there is no need to be so specific in the formulation. The
temperature increment θ(x, t, α) is prescribed to be zero throughout Ω when t = 0. It is useful to apply
the Laplace transform with respect to time, by which functions in the transform domain depend on s, and
time derivatives are replaced by multiplication by s. The case of time-harmonic sources is obtained by
taking s = iω.

The temperature, now represented as θR+θ(x, s, α)
iii, where θR is the (uniform) reference temperature,

is governed by the linearized equation of energy conservation

−∇ · q+ r = sθRη, (3.2)
iiiWith abuse of notation, we use the same symbols for functions and their Laplace transform.
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where η is increment of entropy. The kinetic fields q and η are functions of the kinematic fields ∇θ and θ
via the linear, time-invariant, and local constitutive equations

−q = κ(∇θ − ζ), θRη = c(θ − φ), (3.3)

where ζ is a purely artificial residual thermal gradient, analogous to the artificial magnetic polarization
for electrodynamics, or the strain polarization introduced by Willis [8, 9, 34], for the purpose of making a
unique choice from the equivalence class of effective constitutive tensors. The additional residual field φ
is included just for symmetry; either one of ζ and φ could be set to zero.

3.2 Symbolic matrix notation

We recast the problem of heat conduction in a symbolic matrix form, which will be useful in the subsequent
homogenization scheme. First, we rewrite the energy equation as

DTh = −f, (3.4)

where DT =
(
∇· −s

)
is a row vector representing a differential operator acting on the column vector of

kinetic fields h =

(
−q
θRη

)
, and f = r. The structure in Eq. (3.4) corresponds to the structure introduced

by Willis [8] for electromagnetics and elastodynamics, when projected onto a lower-order tensor space.
For example, in elastodynamics f represents a (body-force density) vector field rather than a scalar field,the
first component of h is a second-order (stress) tensor field rather than a vector field, and so oniv.

Next, we recast the constitutive equations in the form

h = L (b−m) , (3.5)

where

L =

(
κ 0
0T c

)
, m =

(
ζ
φ

)
, (3.6)

and the kinematic vector b is obtained by applying the differential operator B =

(
∇
1

)
to the potential

w = θv. While the operator B defined in Refs. [8, 14] includes time differentiation, here it only contains a
spatial gradient; this results in a parabolic governing equation.

Combining Eqs. (3.4) and (3.5) reads

DTL (Bw −m) = −f. (3.7)
ivConversely, the structure of Pernas-Salomón and Shmuel [14] generalizes Willis’ result [8], by accounting for additional

differential operations and field variables present in the electroelastic problem.
vThe purpose of these apparently redundant definitions (such as f = r earlier) is to link this structure to the general structure

in Ref. [14].
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3.3 Macroscopic formulation

The next objective is to develop a macroscopic formulation using meaningful effective field variables
and constitutive relations. To this end, we define the effective fields by ensemble averaging [1, 8], as in
Eq. (3.1), which identically satisfy the ensemble average of Eq. (3.7)

DT ⟨h⟩ = −f, (3.8)

where f = ⟨f⟩ since r is sure. The outstanding problem is to relate ⟨h⟩ to a weighted mean
〈
w(2)b

〉
, where

w(2) is positive and
〈
w(2)

〉
= 1. This symbolic notation means that the effective constitutive relations relate

the ensemble means ⟨q⟩, ⟨η⟩ to a weighted mean of temperature
〈
w(2)θ

〉
and its gradient. We will provide

an exact formula showing that these relations are nonlocal in space and time and contain bianisotropic
terms, even without modulating κ and c in time.

4 The exact homogenization method

Our scheme uses the Green’s function of the problem and its adjoint to obtain a useful expression for〈
w(2)b

〉
and in turn for ⟨h⟩. With the notation in Sec. 3.2, the equation for G(x,x′) is

DTL (BG−m) = −δ (x− x′) , (4.1)

where δ is the Dirac delta. To define the adjoint Green’s function, we use Green’s identity

(((M{w} , v)))Ω − (((w,M† {v} )))Ω = boundary terms, (4.2)

where M denotes the operator acting on w as defined by Eq. (3.7), M† is the formal adjoint with respect
to the bilinear pairing (((a, b)))Ω =

∫
Ω
a(x, s) · b(x, s)dx, right-hand side in Eq. (4.2) stands for boundary

terms resulting from the surface integral of the bilinear function of w, v and their derivatives. Working this
out yields

B†LT(DT)†G†(x,x′) = −δ (x− x′) , (4.3)

where

D† =

(
−∇·
−s

)
, L† = LT, B† =

(
−∇
1

)
, (4.4)

where G† is subjected to G† = 0 at ∂Ωθ where θ is prescribed and to
(
κ† · ∇G

)
· n = 0 at ∂Ωq where q · n

is prescribed. Following a standard procedure, the Green’s identity implies the symmetry G† (x,x′) =
G (x′,x).
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To derive the effective relations, we first take the product of Eq. (3.7) and G†(x,x′), from which we
subtract the product of Eq. (4.3) and w (x) and employ the sifting property of the Dirac delta to obtain

w(x′) =

∫
Ω

G†fdx+

∫
Ω

DTL (Bw −m)G†dx−
∫
Ω

(D†)TL†B†G†wdx. (4.5)

Using the divergence theorem, integration by parts and the boundary conditions, we arrive at

w(x′) =

∫
Ω

G†fdx+

∫
Ω

(D†)TG†L†mdx−
∫
∂Ω

G†q0dada−
∫
∂Ωθ

θ0κ†∇G†nda. (4.6)

With a view towards calculating a weighted mean of θ(x′), w(x) can be replaced by
〈
w(2)w

〉
in the

surface integral, because θ is prescribed and sure on ∂Ωθ and makes zero contribution over ∂Ωq owing
to the homogeneous boundary condition satisfied by G†. Having made that replacement, this part of the
surface integral can be transformed back to an integral over Ω, to yield

⟨θ(x′)⟩ =
〈
w(2)θ

〉
(x′) +

∫
Ω

G†fdx−
∫
∂Ω

G†q · nda−
∫
Ω

(D†)TG†L(B
〈
w(2)w

〉
−m)dx. (4.7)

It is convenient now to employ a compact notation with which Eq. (4.7) reads

⟨w⟩ =
〈
w(2)w

〉
+ G{w(1)(r0,−q0)}+ ((DT)†G†)†L(B

〈
w(2)w

〉
−m), (4.8)

where the integral operator ((DT)†G†)† has kernel

((DT)†G†)†(x′,x) = −(DTG†)(x,x′), (4.9)

and
G{f, g}(x′) =

∫
Ω

G(x′,x)f(x)dx+

∫
∂Ωq

G(x′,x)g(x)da. (4.10)

Multiplying Eq. (4.8) by w(2) and ensemble averaging gives〈
w(2)Gw(1)

〉
{r0,−q0} = −

〈
w(2)((DT)†G†)†L

〉
(B

〈
w(2)w

〉
−m). (4.11)

Hence, so long as
〈
w(2)Gw(1)

〉
is invertible,

{r0,−q0} = −
〈
w(2)Gw(1)

〉−1 〈
w(2)((DT)†G†)†L

〉
(B

〈
w(2)w

〉
−m). (4.12)

Substituting this expression back into Eq. (4.8) explicitly relates w to
〈
w(2)w

〉
, i.e., θ(x′) to

〈
w(2)θ

〉
(x′).

We substitute this key result into the constitutive equations and ensemble average to obtain the effective
constitutive relations

⟨h⟩ = L̃(
〈
w(2)Bw

〉
−m) =:

(
κ̃ χ̃

ξ̃ c̃

)
(
〈
w(2)Bw

〉
−m), (4.13)
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where
L̃ = ⟨L⟩ −

〈
LBGw(1)

〉 〈
w(2)Gw(1)

〉−1 〈
w(2)((DT)†G†)†L

〉
+
〈
LB((DT)†G†)†L

〉
. (4.14)

In suffix notation, the kernels of the integral operators are

κ̃ij(x,x
′) = ⟨κij(x)⟩

+

∫
Ω

⟨κik(x)∂xk
G(x,y)w(1)(y)⟩dy

∫
Ω

⟨w(2)Gw(1)⟩−1(y, z)⟨w(2)(z){∂x′
ℓ
G(z,x′)}κℓj(x′)⟩dz

− ⟨κik(x){∂xk
∂x′

ℓ
G(x,x′)}κℓj(x′)⟩, (4.15a)

c̃(x,x′) = ⟨c(x)⟩

+ s

∫
Ω

⟨c(x)G(x,y)w(1)(y)⟩dy
∫
Ω

⟨w(2)Gw(1)⟩−1(y, z)⟨w(2)(z)G(z,x′)c(x′)⟩dz

− s ⟨c(x)G(x,x′)c(x′)⟩ , (4.15b)

χ̃i(x,x
′) = s

∫
Ω

⟨κik(x)∂xk
G(x,y)w(1)(y)⟩dy

∫
Ω

⟨w(2)Gw(1)⟩−1(y, z)⟨w(2)(z){∂x′
ℓ
G(z,x′)}c(x′)⟩dz

− s⟨κik(x){∂xk
G(x,x′)}c(x′)⟩, (4.15c)

ξ̃j(x,x
′) =

∫
Ω

⟨c(x)G(x,y)w(1)(y)⟩dy
∫
Ω

⟨w(2)Gw(1)⟩−1(y, z)⟨w(2)(z){∂x′
ℓ
G(z,x′)}κlj(x′)⟩dz

− ⟨c(x){∂xl
G(x,x′)}κlj(x′)⟩. (4.15d)

5 Comments

Although Eq. (4.14) is formal in nature because it contains no prescription for calculating the Green’s
function of the random mediumvi, it reveals the general structure of the effective relations L̃ and provides
the following insights. Evidently, the effective constitutive equations are nonlocal in time and space, even
though the microscopic equations are local and generally include nonzero cross-coupling terms (χ̃, ξ̃),
whose kernels are vector-valued. The cross-couplings form an adjoint pair as part of self-adjoint effective
constitutive relations when κ = κT (so the composite is reciprocal) and w(1) = w(2). Therefore, when the
underlying composite is reciprocal, our effective model is reciprocal as well, as required [12, 15, 32]. The
effective constitutive operator L̃ (4.13) is reminiscent of equation (3.19) of Willis [8] for electromagnetics
and elastodynamics, and its extension (without weighted mean) to electro-elastodynamics by Pernas-
Salomón and Shmuel [14], see equation (15) therein. It is slightly more flexible than the former in thatw(1)

need not be the same as w(2). Notably, for the present problem, B ̸= −(DT)† so both have to be explicit in
L̃. The result would remain applicable if the constitutive tensor L were full, i.e., the homogenization was
of a medium made of thermally bianisotropic constituents.

viA formulation employing a comparison linear medium which lends itself to approximation will be presented elsewhere.
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The structure of L̃ as evident in Eq. (4.15) motivates a different form of constitutive equations that
includes the time rate of the effective temperature as a state variable, namely,(

−⟨q⟩
⟨θRη⟩

)
=

(
⟨κ⟩ 0
0T ⟨c⟩

)( 〈
∇w(2)θ

〉
− ζ〈

w(2)θ
〉 )

+

(
κ̂ ξ̌

ξ̂ ĉ

)( 〈
∇w(2)θ

〉
− ζ

s
〈
w(2)θ

〉
− φ

)
, (5.1)

where ξ̌ = ξ̂† when κT = κ and w(1) = w(2). Spelling out this adjoint symmetry explicitly∫
Ω

(∫
Ω

sξ̂† (x,x′) θ (x′) dx′
)
· ∇θ (x) dx =

∫
Ω

sθ(x)

(∫
Ω

ξ̂ (x′,x) · ∇θ (x′) dx′
)

dx. (5.2)

The homogenized model delivers an effective equation for
〈
w(2)θ

〉
that may be fundamentally different

from the equation for θ. Complete analysis admitting full nonlocal response is beyond the scope of
the present work; here we recall several properties of its local approximation, which were noted in our
companion paper [19] in the particular context of unweighted mean values. First, the local approximation
of the effective equation for

〈
w(2)θ

〉
is a differential equation that is generally second-order in time as well

as space, in contrast with the underlying diffusion equation for θ. Thus, the effective response consists of
waves that travel at finite speed while still decaying, so long as ĉ > 0. If ĉ were negative, the governing
equation would be elliptic and not credible as the result of any time-dependent diffusive process. The
one-dimensional local approximation of the effective equation contains also a mixed space-time derivative
that depends on ξ̂ − ξ̌. In the self-adjoint case where ξ̌ = ξ̂† = ξ̂, the contribution of the bianisotropic
terms to the effective differential equation vanishes; still, the adjoint pair changes the characteristic thermal
impedance. In one-dimension under a time-harmonic heat source with frequency ω, the thermal impedance
readsvii

Z±
χ =

θ±

q±
=

(
±Z−1 − χ̃

)−1
, (5.3)

where Z−1 = kκ̃, k =
√
cs/κ is the wavenumber, s = iω in this time-harmonic case, and the ± notation

denotes quantities associated with forward- and backward disturbances (more details in Sec. 7). Thus, the
bianisotropic terms capture direction-dependent impedance, similar to their role in wave systems [13, 16,
35].

We conclude this section commenting on the applicability of Eq. (4.14) to a periodic medium. This is
carried out by regarding the composite as random through uncertainty in the position of any one reference
point y in any one periodic cell. The Green’s function for the random medium is then G(x,x′,y) =
G0(x−y,x′−y), where the random variable y is uniformly distributed over one cell, Ωp say, fixed in space.
This prescription was fully explained in Ref. [8] in the context of electromagnetics and elastodynamics
and examples of its use were presented for periodic elastic laminates in Ref. [34]; and for piezoelectric
laminates in Ref. [14].

viiHere we fix a typo in our companion paper, where the signs in the brackets were erroneously flipped.
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Figure 1: (a) A finite laminate occupying x1 < x < xn+1, composed of n = 6 isotropic laminae, with
lamina r occupying xr < x < xr+1 and having conductivity κr and thermal capacity cr. (b) Part of an
infinite periodic composite using the laminate in (a) as its unit cell. An equivalent unit cell that yields
the same periodic composite is denoted by the dashed frame over the interval (x1 + y, xn+1 + y), y being
arbitrary.

6 Analysis and retrieval method in one-dimension

Consider a finite laminate occupying x1 < x < xn+1. It is composed of n isotropic laminae, with lamina r
occupying xr < x < xr+1 and having conductivity κr and thermal capacity cr (see Fig. 1a). Note first that,
generically, a conventional medium with conductivity κ and heat capacity c admits solutions to Eq. (3.2)
in the form

s(x, t) :=

(
−q(x, t)
θ(x, t)

)
=

(
−e−kx/Z ekx/Z
e−kx ekx

)(
a+

a−

)
est =: Q (x) a est, (6.1)

where k and Z were given in Sec. 5 (now with ξ̃ = 0) and the coefficient a+ (a−) is the amplitude of the
solution that decays in the positive (negative) direction. The spatial evolution of s can be written as

s,x =

(
0 cs

1/κ 0

)
s =: Ms. (6.2)

So, the heat flux and temperature at 0 and x are related by

s(x) = Q (x)Q−1 (0) s(0) =: Ts(0), (6.3)

where

T = eMx = I cosh kx+M
sinh kx

k
=

(
cosh kx Z−1 sinh kx
Z sinh kx cosh kx

)
=:

(
C S/Z
ZS C

)
, (6.4)

is the transfer matrix. Note that T(x)T(y) = T(x + y), from which it follows that T−1(x) = T(−x).
Also note that detT = 1, as required by reciprocity to ensure that the transmission is independent of the
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incident direction. Now define Tr to be T(xr+1−xr) with κ and c taking the values κr and cr respectively.
It follows that

s(xn) = Ts(x1), (6.5)

where T and M are no longer generic but are redefined to be

T = TnTn−1...T1 = eMnlneMn−1ln−1 ...eM1l1 , (6.6)

where lr = xr − xr−1. Still detT = 1 since the determinant of the product equals the product of the
determinants.

Suppose that the n-layered cell considered is embedded in an infinite medium with conductivity κ0
and heat capacity c0. Then, the most general freely propagating disturbance in the background medium
isviii

θ (x, t) e−st =

{
a−L e

k0(x−x1) + a+L e
−k0(x−x1) x ≤ x1

a−R e
k0(x−xn+1) + a+R e

−k0(x−xn+1) x ≥ xn+1

, k0 =
√
sc0/κ0, (6.7)

where k0 has positive real part when s has positive real part. The coefficient a+L represents a disturbance
incident from the left. It generates a reflected field with amplitude a−L = rLa

+
L , say, and a transmitted field

a+R = tLa
+
L , where rL, tL are respectively the reflection and transmission coefficients for a disturbance

incident from the left. Similarly, a disturbance incident from the right with amplitude a−R , generates a
reflected field with amplitude a+R = rRa

−
R and a transmitted disturbance with amplitude a−L = tRa

−
R . Now

with the notation

aL =

(
a+L
a−L

)
, aR =

(
a+R
a−R

)
, (6.8)

these relations can be expressed in the form [36]

aR = KaL ≡
(
tL − rRt

−1
R rL rRt

−1
R

−rLt−1
R t−1

R

)
aL. (6.9)

The components of the amplitude transfer matrix K are thus experimentally measurable from scattering
experiments and their resultant reflection and transmission coefficients [37]. Retrieval methods aim at
relating these measurements, or, equivalently, K, to the effective properties of the scatterer [16, 35, 38–
40]. To develop a similar method here, we first recall that Eq. (6.1) implies

s(x1) = Q0(x1)aL, (6.10)

where Q0 takes the values k0 and Z0 (the same representation for s at x = xn+1 applies, with aL replaced
by aR). The continuity of q and θ at x = x1 and x = xn+1 requires that

Q0(xn+1)aR = T(Q0(x1)aL) (6.11)
viiiIn our companion paper [19] s = iω was adopted.
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which, together with (6.9), gives
T = Q0(xn+1)KQ

−1
0 (x1). (6.12)

Note that detK = tL/tR, where reciprocity requires tL = tR, and so for K to be physically valid, it must
satisfy detK = 1, as confirmed by the fact that detT = 1.

Relation (6.11) permits the experimental retrieval of T from scattering experiments. Heuristic methods
of homogenization map this retrieved data to a fictitious homogeneous medium with some T̃ that reproduces
the same scattering response as the heterogeneous scatterer. The structure of T as follows from Eqs. (6.4)
and (6.6) implies that, in the general case, this mapping to κ̃ and c̃ alone is not possible, and a third material
parameter, ξ̃, is needed because generally T has three independent parameters (rL, rR and tL ≡ tR).

Building on the conclusions of the exact homogenization method, we postulate a uniform medium
governed by the local approximation of the bianisotropic constitutive equations,

−q = κ̃θ,x + χ̃θ, θRη = ξ̃θ,x + c̃θ, (6.13)

an approximation which is valid when the thermal wavelength is much larger than the size of the medium.
In the absence of sources, its corresponding energy equation is

κ̃θ,xx + (χ̃− sξ̃)θ,x − sc̃θ = 0. (6.14)

The intention is to equate its transfer matrices to the corresponding matrices T and K of the original
heterogeneous medium. To this end, we will calculate M̃, starting by extracting θ,x from the constitutive
equation for q

θ,x = −
(
1

κ̃
q +

χ̃

κ̃
θ

)
; (6.15)

and substituting this into the constitutive equation for the entropy to obtain

θRη =

(
c̃− ξ̃

χ̃

κ̃

)
θ − ξ̃

κ̃
q. (6.16)

We can now use this expression in the energy equation to write −q,x as

−q,x = sθRη = −s
(
ξ̃
χ̃

κ̃
− c̃

)
θ − s

ξ̃

κ̃
q. (6.17)

So

M̃ = κ̃−1

(
sξ̃ sκ̃c̃− sξ̃χ̃
1 −χ̃

)
, (6.18)
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from which we obtain expressions for the effective properties in terms of the components of M̃, as
summarized in our companion paperix, namely,

κ̃ =
1

M̃21

, c̃ = − det M̃

sM21

, χ̃ = − M̃22

M̃21

, ξ̃ =
M̃11

sM̃21

. (6.19)

Since
detT̃ = det eM̃x = det etr M̃x, (6.20)

the requirement det T̃ = detT ≡ 1 enforces traceless M̃ and

χ̃ = sξ̃, (6.21)

reiterating the notion that the bianisotropic cross-couplings are an adjoint pair when the underlying medium
is Hermitian. We can now apply Eq. (6.4) for the effective medium and obtain

T̃ =

(
C + χ̃ZS (1− χ̃2Z2)S/Z

ZS C − χ̃ZS

)
, (6.22)

where now the argument of C and S is k̃x with k̃ = (c̃s/κ̃)1/2. Equivalently, result (6.22) can be obtained
by observing that the general solution of Eq. (6.14) can be written as

θ(x) = θ0 cosh k̃x+ A sinh k̃x, (6.23)

and correspondingly,
−q(x) = Z−1(θ0 sinh k̃x+ A cosh k̃x) + χ̃θ(x). (6.24)

Then, if q(0) = q0, this implies that A = −Z(q0 + χ̃θ0) and Eq. (6.22) follows.
With x taking the value l := xn+1 − x1, the matrix T̃ is required to coincide with T, eventually

providing

χ̃ =
T11 − T22

2T21
, κ̃ =

Sl

T21ln(C + S)
, c̃ =

S ln(C + S)

sT21l
, with C =

T11 + T22
2

, S =
√
C2 − 1. (6.25)

The calculation just summarized is equivalent to requiring that the scattering properties of the given
composite layer, sandwiched between two conducting half-spaces, are reproduced if the composite is
replaced by a layer of effective material with the properties as derived. We can therefore express the

ixEquation (8) in Ref. [19] is slightly different, there we used iω instead of s, and defined the components of the state vector
differently.
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effective properties directly in terms of the measurable scattering coefficients, combining Eqs. (6.1), (6.9)
and (6.12) gives

κ̃ = Z−1
0

l

ψ

√(
e2k0l + t2 − rLrR

)2 − 4t2e2k0l

e2k0l − t2 + rLrR + ek0l
(
rL + rR

) , (6.26a)

c̃ = Z−1
0

ψ

s l

√(
e2k0l + t2 − rLrR

)2 − 4t2e2k0l

e2k0l − t2 + rLrR + ek0l
(
rL + rR

) , (6.26b)

χ̃ = Z−1
0

ek0l
(
rL − rR

)
e2k0l − t2 + rLrR + ek0l

(
rL + rR

) ≡ sξ̃, (6.26c)

where coshψ = [ek0l + e−k0l(t2 − rLrR)]/2t and we used the center of the scatterer as the origin (x1 =
−l/2, xn+1 = l/2). Evidently, the bianisotropic terms capture asymmetry in the reflection properties of
the scatterer, a manifestation of directional impedance.

Now consider an infinite periodic composite with the given composite layer as its unit cell (Fig. 1b).
Floquet–Bloch waves of the form fp(x)e

kBx+st, where fp is periodic with period l require that

det(T− ekBlI) = 0. (6.27)

This reduces to the famous trace formula for waves in an n-component periodic laminate [41, 42],

2 cosh kBl = trT, (6.28)

because detT = 1. This is precisely the expression for C in Eq. (6.25). Thus, kB = k̃ = (c̃s/κ̃)1/2 and
is independent of χ̃, as it must be if the periodic composite is replaced by the effective material as defined
above.

There is, however, no need to identify the unit cell as the interval (x1, xn+1). It could equally be chosen
as (x1 + y, xn+1 + y) for any y, as denoted by the dashed frame in Fig. 1b.

7 Numerical examples

This Section provides numerical calculations for the effective properties of exemplary laminates, by
applying the method in Sec. 6. The comprising materials of the analyzed laminates are summarized in
Table 1, together with their parameters and physical units. For completeness, the physical units of χ̃ and
ξ̃ are respectively W(m2K)−1 and J(m2K)−1. The results will be presented in terms of dimensionless
variables

κ̄ = κ̃/κ0, c̄ = c̃/c0, χ̄ = χ̃/χ0, ξ̄ = ξ̃/ξ0, x̄ = x/l, ω̄ = ωc0l
2/κ0, (7.1)
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Material κ [Wm−1K−1] c [Jm−3K−1]

SiO2 1.38 1.65×106

Diamond 719 1.78×106

Copper 400 3.45×106

Table 1: Thermal conductivity and specific heat of the constituents employed in the calculations.
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Figure 2: Effective properties of a bi-material laminate as functions of the normalized radian frequency
ω. Real and imaginary parts of κ (blue), c (red) and ξ (purple) are shown in solid and dashed lines,
respectively. (a) Symmetric arrangement. (b) Asymmetric arrangement.

where the period length l is measured in meters and

χ0 = κ0/l, ξ0 = c0l. (7.2)

The choice of κ0 and c0 has been made to respect the values shown in Table 1. Thus,

κ0 = 1 W(m K)−1 c0 = 106 J(m3K)−1. (7.3)

Fig. 2 relates to a laminate comprising a diamond layer sandwiched between two layers of silica.
Fig. 2a corresponds to a symmetric arrangement in which the silica occupies the intervals (0, 0.3) and
(0.7, 1) and the diamond occupies the middle layer, (0.3, 0.7), while in Fig. 2b, the silica occupies
(0.15, 0.3) and (0.7, 1.15). (The associated scattering configurations and interval identifications are
shown in Fig. 3.) The plots in each case show the normalized effective properties κ (blue), c (red) and ξ
(purple) as functions of normalized radian frequency ω.x Real parts are shown as solid lines and imaginary
parts as dashed lines. The most noteworthy feature is that ξ = 0 in Fig. 2a, as it must be because the cell

xThe bars over variables introduced above are now omitted.
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Figure 3: Scattering configurations corresponding to (a) the symmetric and (b) the asymmetric cells of
Fig. 2. (c) Two interval identifications for these cells, indicated by the white (symmetric, y = 0) and gray
(asymmetric, y = 0.15) frames.
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Figure 4: Effective properties of a tri-material laminate as functions of the normalized radian frequency
ω. Legend as in Fig. 2. Panels (a) and (b) correspond respectively to the geometries considered in Figs. 2a
and 2b, having the third layer replaced by copper.

geometry is symmetric about its midpoint and ξ is an odd function relative to a point of symmetry. It
was remarked in our companion paper [19] that the gradient of the imaginary part of c with respect to ω
was positive (for positive ω) for larger values of ω, suggesting a possible hyperbolic effective response as
opposed to parabolic effective response; this is borne out in the plots.

Fig. 4 considers the same configurations as Fig. 2, having the third silica layer replaced by copper. (See
Fig. 5 for the associated scattering configurations and interval identifications.) This cell displays physical
asymmetry, regardless of where it is deemed to start. Now in Fig. 4a, ξ is found by computation to have
real part virtually independent of ω and imaginary part close to zero, while Fig. 4b shows that ξ is virtually
zero when the cell starts at y = 0.15.

Fig. 6 provides more detail of how the effective constants vary with the starting position y of the cell,
at the arbitrarily-chosen dimensionless ω = 10. Fig. 6a is for the cell composed of 60% silica and 40%
diamond. It has reflection symmetry about y = 0 and y = 0.5 and Fig. 6a reflects this. Fig. 6b is for the
tri-material laminate. There is no symmetry and it appears that there is little variation in κ and c, except
when y ∈ (0, 0.3), that is, when the front face is silica. However, ξ varies significantly throughout the full
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Figure 5: Scattering configurations corresponding to Fig. 4: (a) y = 0 and (b) y = 0.15, both extracted
from the tri-material periodic laminate shown in (c). The two interval identifications are indicated by white
and gray frames.
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Figure 6: Effective properties at ω = 10 of the (a) bi-material and (b) tri-material laminates as functions
of y, for the cell (y, y + 1). Legend as in Fig. 2.

range (0, 1) of y, so that the end impedance remains sensitive to y.
As mentioned at the end of Section 6, a periodic laminate can support a rightward Floquet–Bloch

disturbances of the form θ(x, t) = θp(x)e
−kBx+st, with energy flux q(x, t) = qp(x, t)e

−kBx+st, where θp(x)
and qp(x) are periodic with the period l of the mediumxi. The periodic functions θp and qp depend on the
details of the unit cell but the Floquet–Bloch complex wavenumber kB is expressible as kB = (cs/κ)1/2,
where κ and c are effective properties of the unit cell; the constants ξ and χ = sξ have no influence. The
wave is time-harmonic if s = iω. The values of θp and qp at the left-hand end of the period depend on the
choice of the interval that defines it but the Floquet–Bloch wavenumber kB has to be independent of that
choice, and the present calculations confirm this: the product (κc)1/2 is independent of y, even though κ
and c vary with y, as shown in Fig. 6.

The thermal impedance at the left-hand end of the cell is obtained by noting that q satisfies Eq. (6.1)
and θ,x = −kBθ for the right-traveling disturbance, so that

−q = (χ− kBκ)θ = s1/2[s1/2ξ − (cκ)1/2]θ. (7.4)
xiRelative to the chosen dimensionless formulation, l = 1.
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Figure 7: Normalized thermal impedances Ẑ+
χ versus ω for the bi-material laminates when y = 0.2 (blue)

and 0.8 (red). (a) Real and imaginary parts in solid and dashed curves (b) Absolute values. The term
(κc)−1/2 is also shown in green.

It follows that the thermal impedance is
Z+

χ = s−1/2Ẑ+
χ , (7.5)

where
Ẑ+

χ = [(cκ)1/2 − s1/2ξ]−1 = (Z−1 − s1/2ξ)−1. (7.6)

A similar analysis for a left-traveling disturbance of dependence ekBx, for which θ,x = kBθ, results with

Ẑ− = (−Z−1 − s1/2ξ)−1. (7.7)

The difference between Eqs. (7.6) and (7.7) shows that the bianisotropic terms capture a directional part
in the impedance. Fig. 7 shows dimensionless plots for Ẑ+

χ , for the bi-material laminates when y = 0.2
(blue curves) and 0.8 (red curves): Fig. 7a shows respectively the real and imaginary parts in solid and
dashed curves, while Fig. 7b shows absolute values. The reason for the difference in impedances is that
the excited right-traveling wave first encounters a layer of silica whose thickness is only 0.1 of the period
when y = 0.2 whereas it first encounters a layer of thickness 0.5 of the period when y = 0.8. The curves
for y = 0.8 can equally be regarded as plots of the thermal impedance for excitation at the right-hand
side of a left-traveling wave in the cell occupying (0.2,1.2). In our companion paper [19] some results
were shown for a cell of length l = 50 nm. For this example, the physical ω is obtained by multiplying
its dimensionless equivalent by κ0/(c0l2) = 0.4 × 109 s−1, that is by 0.4 radians/ns. The dimensionless
lengths chosen for the present figures do not correspond exactly to any used in our companion paper [19]
but confirm the trends indicated there.
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8 Summary

The advent of metamaterials has sparked interest in homogenization methods for identifying extraordinary
effective responses in composite materials. A prominent exact method for waves was developed by Willis
[6–8, 43], showing that effective responses become nonlocal in space and time and exhibit bianisotropy,
even when the constituent responses are local and non-bianisotropic. Here, we have developed a homogenization
framework that unifies diffusion and waves. As in wave systems, we find that the effective constitutive
relations of heterogeneous conductors are nonlocal and include bianisotropic terms whose local part
captures asymmetry-driven directional thermal impedance [13, 16, 35]. In contrast to wave systems, the
effective diffusion equation may change character—from parabolic to hyperbolic. We expect the insights
gained here, linking microstructural heterogeneities to anomalous macroscopic diffusion, to enable inverse
design of thermal metamaterials [44–46]. In future work, we will extend this unified wave–diffusion
homogenization framework to thermoelasticity with the premise of developing metamaterials exhibiting
thermomomentum coupling.
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