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Abstract

Phonons are quasiparticles associated with mechanical vibrations in 
materials. They are at the root of the propagation of sound and elastic 
waves, as well as of thermal phenomena, which are pervasive in our 
everyday life and in many technologies. The fundamental understanding 
and control of phonon responses in natural and artificial media are 
key in the context of communications, isolation, energy harvesting 
and control, sensing and imaging. It has recently been realized 
that controlling different symmetry classes at the microscopic and 
mesoscopic scales in synthetic media offers a powerful tool to precisely 
tailor phononic responses for advanced acoustic and elastodynamic 
wave control. In this Review, we survey the recent progress in the design 
and synthesis of artificial phononic media, namely phononic crystals 
and metamaterials, guided by symmetry principles. Starting from 
tailored broken spatial symmetries, we discuss their interplay with time 
symmetries for non-reciprocal and non-conservative phenomena. We 
also address broader concepts that combine multiple symmetry classes 
to induce exotic phononic wave transport. We conclude with an outlook 
on future research directions based on symmetry engineering for the 
advanced control of phononic waves.
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Equations (1) and (2) may not be sufficient to describe wave 
propagation. This can happen when the material does not satisfy 
the required symmetries, if there are other degrees of freedom in 
the system, if the system exhibits nonlinearities or if a continuum 
theory is not appropriate given the size of material heterogeneities 
of the medium when compared with the wavelength. Several of these 
conditions may apply at the same time, especially in the context of 
engineered materials.

Materials with lower symmetries
When mechanical waves propagate in materials with lower symmetries, 
the propagation equations typically acquire additional terms account-
ing for new couplings between degrees of freedom that arise when the 
symmetry of the system is reduced. It can happen that the equations 
keep roughly the same form but are more complicated. For instance, 
a more general version of equation (2) that does not assume isotropy 
reads (neglecting body forces)

ρ u C u∂ = ∂ [ ∂ ], (3)t i j ijk k
2

ℓ ℓ

in which ui is the ith Cartesian component of u, and ∂i ≡ ∂/∂ri are partial 
derivatives with respect to space. Here, Cijkℓ is the elasticity tensor, 
which relates the stress σij to the displacement gradients ∂ℓuk through 
σij = Cijkℓ∂ℓuk. Compared with equation (2), more terms are present, but 
they are roughly of the same type (a second-order derivative with 
respect to space). Any remaining symmetry is encoded in Cijkℓ. For 
instance, spatial symmetries represented by matrices U ∈ O(d) con-
strain the elastic tensor through ℓ ℓℓ ℓC R R R R C=ijk ii jj kk i j k′ ′ ′ ′ ′ ′ ′ ′, where Rnn′ 
are rotation matrices.

It is also possible for terms to appear. As an example, consider 
sound waves propagating in a moving fluid flowing along the x axis.  
In the laboratory frame, these can be described by the equation

β p ρ p βv p βv p∂ = ∇ − 2 ∂ ∂ − ∂ , (4)t x t x
2

0
−1 2

0 0
2 2

in which v0 is the velocity of the unperturbed fluid in the laboratory 
frame. The term with mixed time and space derivatives ∂x∂tp associated 
with transport is known as a Willis coupling term when viewed through 
the lens of dynamic homogenization14. As we shall see in the sections 
on breaking inversion symmetry and on breaking reciprocity, this term 
results from the violation of both inversion symmetry and time- 
reversal invariance in the system. The p∂ x

2  term is the consequence of 
the anisotropy of the system; contrary to the Willis coupling, it could 
arise in a mirror-symmetric system.

Additional degrees of freedom in the medium
The continuum description of equations (1) and (2) focuses on the 
displacement field u(t,r). However, this may not be enough to encode 
all the relevant degrees of freedom in the system. As an example, 
mechanical degrees of freedom can be coupled with heat transport 
(in thermoelasticity) or with electromagnetism (in piezoelectricity 
and electrostriction15). Typically, the key feature of a piezoelectric 
crystal is the conversion of mechanical energy into electricity and 
back. As such, the electromagnetic field has to be included in the 
description of phononic materials when piezoelectric phenomena 
emerge. This example illustrates the interplay between symmetries 
and relevant degrees of freedom: inversion symmetry of bound charge 
distribution within the medium must be broken for piezoelectricity 
to occur and induce strain-dependent electric dipoles. When this is 

Introduction
As outlined by Pierre Curie in the late nineteenth century1, symmetries 
play a fundamental role in the physical understanding of various 
natural phenomena, especially in the context of wave behaviour. As 
a consequence, physicists and engineers have been hunting for the 
presence or absence of symmetries in systems not only to under-
stand, but also to tailor their physical properties. In this Review, we 
provide a unified perspective on the latest research on the propa-
gation of mechanical waves in mesostructured materials, such as 
phononic crystals and metamaterials, under the paradigm of symme-
tries and symmetry breaking. Recent reviews of acoustic and elastic 
metamaterials and metasurfaces2–6 feature exciting advances in the 
control of mechanical wave propagation through structured media. 
Here, we aim at articulating this progress across different classes of 
symmetry engineering, showing how this approach can provide a 
powerful perspective to understand, design and optimize phononic 
metastructures.

Overall, the concept of symmetry is very general: it includes any 
transformation that keeps an object unchanged. This is the case for the 
familiar spatial symmetries, which we discuss after introducing some 
basic phononics concepts. We then expand to abstract symmetries 
connected to the temporal evolution of a system, including reciproc-
ity, time-reversal, time-translation invariance and energy conserva-
tion. Finally, we discuss generalized symmetries involving families of 
systems such as dualities and twist symmetries (Fig. 1).

Symmetry-driven phononics in a nutshell
Mechanical waves and how they propagate
In this Review, we focus on elastic waves (mechanical waves in solids) 
and acoustic waves (mechanical waves in fluids and gases). Possibly the 
simplest description of mechanical waves is from the perspective of 
continuum theories7–10. For instance, acoustic waves in a simple fluid 
can be captured by the acoustic wave equation

β p ρ p∂ = ∇ , (1)t
2

0
−1 2

where p(t,r) is the pressure, ρ0 the density of the unperturbed fluid 
and β its isentropic compressibility (the inverse of the isentropic bulk 
modulus B = β−1). This equation can be obtained by linearizing the 
Navier–Stokes equations along with an isentropic equation of state9,11.

Similarly, continuum elasticity describes the propagation of elas-
tic waves in an ideal, uniform and isotropic solid by the equation of 
motion10,12

 






u u uρ μ B
μ

∂ = ∇ + +
3

∇(∇ ⋅ ), (2)t
2 2

in which ρ is the mass density of the solid, u(t,r) the displacement 
field that measures the motion of the solid with respect to a reference 
configuration, and μ and B are the shear and bulk moduli, respectively. 
Both equations (1) and (2) can be traced to conservation laws that 
arise from symmetry: the conservation of mass ∂tρ + ρ∇ ⋅ v = 0 and 
the conservation of linear momentum ∂tμ = ∇ ⋅ σ + f, in which μ = ρv 
is the density of linear momentum, v = ∂tu the velocity field, σ the 
stress tensor, and f the density of body forces applied externally (set 
to zero here). Acoustic waves are longitudinal, whereas elastic waves 
include both longitudinal compression waves and transverse shear 
waves. Both acoustic and elastic waves have a polarization (the direc-
tion of the oscillating velocity or displacement field, respectively), 
which can be, in the case of plane waves, related to their longitudinal 
or transverse nature13.
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not the case, the mechanical and electrical degrees of freedom are 
decoupled and can be treated independently. Similarly, one must 
consider magnetoelastic effects in naturally occurring magnetic 
materials16 and magnetoelastic metamaterials17 via magnetic order 
parameters18,19. In the same vein, the polarization of acoustic waves 
requires consideration of the acoustic velocity field, not only of the 
scalar pressure field.

Besides this, additional mechanical degrees of freedom not cap-
tured by the instantaneous displacement field can play a role. In the 
simplest situations, these features can be captured by viscoelastic20 or 
elastoplastic21,22 models in which the deformation history affects the 
evolution of the deformation in a rate-dependent way, so the history of 
the displacement gradient ∇u(t,r) must be included in the constitutive 
models. Alternatively, some aspects of microstructural deformation 
asymmetries may be retained in the constitutive description, as for 
micromorphic elasticity23, of which micropolar (Cosserat) elasticity 
theories, which include microscale rotations and couple stresses, are 
a special case23–28. These can be necessary to describe metamaterials 
where complex unit cells lead to internal motions (known as non-affine 
deformations) that may deviate considerably from the (macroscopic) 
average. For instance, consider a half-filled bottle of water. If the bot-
tle is not transparent, we cannot track the motion of the water, so the 
relationship between the total linear momentum and any directly 
observable displacement becomes non-trivial29.

When the system is linear, several simplifications arise. In particu-
lar, we can perform a Fourier transform in space and time, which allows 
us to hide degrees of freedom at the price of having complex-valued 

‘non-local’ material coefficients that depend on the wavevector q 
and the frequency ω and therefore represent a convolution in space 
and time. The convolution in time, in particular, represents a form 
of time-translation-invariant memory in the system. For instance, 
equation (3) becomes

ℓ ℓq q qρω u ω C ω q q u ω( , ) = ( , ) ( , ). (5)i ijk j k
2

The case of equation (3) would correspond to a constant Cijkℓ not 
depending on the wavevector q and the frequency ω. In fact, the mate-
rial coefficients Cijkℓ(ω) of conventional materials such as steel or air 
display a weak dependency on frequency owing to microscale behav-
iour such as molecular relaxation processes and internal friction20,30. 
From the perspective of rheology, this means that all materials have a 
viscous response in addition to an elastic response. In principle, this 
Fourier transform procedure allows us to eliminate many degrees of 
freedom, but keep in mind that we still need to keep track of the degrees 
of freedom we care about because we can experimentally manipulate or 
measure them, like the electric field in piezoelectricity. Equation (5) is 
deceptively simple: if we Fourier transform back to real time, the prod-
uct of Fourier transforms becomes a convolution of the instantaneous 
strain and the relaxation function of the material20, which makes the 
presence of memory explicit in the system. When the system is nonlin-
ear, these simplifications do not hold, and a case-by-case approach is 
required. However, symmetries still constrain the possible nonlinear 
terms in the equations and can be harnessed to control the behaviour 
of the system31,32.

• Longitudinal motion
• Sound in fluids and gasses
• Dilatation waves in solids

• Transverse motion
• Shear waves in solids
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Fig. 1 | Symmetry-driven artificial phononic media. 
Schematics of the various symmetries characterizing 
phononic materials and metastructures, at both the 
microscopic and macroscopic scales. Breaking these 
symmetries enables enhanced control over acoustic 
and elastodynamic wave propagation. Symmetry 
classes include spatial and non-spatial symmetries, 
with the latter including reciprocity, time-reversal 
and time-translation invariance symmetry, and 
energy conservation, and the generalization of these 
symmetries to families of systems. TRS, time-reversal 
symmetry.
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Beyond continuum theories
In some situations, it may be necessary to describe the material as a col-
lection of discrete units coupled to each other (for instance, a collection 
of masses connected by springs). This is the case, for instance, when 
an artificial material is physically constructed out of weakly coupled 
individual units such as resonators, whose size is not negligible when 
compared with the typical scale of spatial variations of the phononic 
wave propagating in the system. In some situations, a continuum 
description may also be insufficient even if we include many degrees 
of freedom32,33.

In the context of wave propagation, the most common way of 
describing an assembly of coupled resonators or modes is tempo-
ral coupled-mode theory34,35, whereby the evolution of the complex 
amplitude an(t) of the resonant mode n is described by

∑a L a∂ = , (6)t m
n

mn n

where the matrix (or operator) ̂L with components Lmn represents the 
coupling between different modes (the operator ̂ ̂H L= i  is often called 
a Hamiltonian by formal analogy with quantum mechanics). In this 
case, the symmetry of the system arises from the interplay between 
the symmetry of the modes and of the geometry of their couplings, 
and is encoded in operators acting in the same space as L.̂ Analogously 
to atomic orbitals, as shown in Fig. 1, meta-atom modes can be scalar, 
vectorial (in which case an are the components of the modes) and so 
on. They can be further organized into a metamaterial with a crystalline 
structure, allowing one to design its symmetries on demand. In this 
coupled-mode theory, transformations of the degrees of freedom (that 
may or may not be symmetries) are encoded in invertible operators U ̂ 
acting in the same space as L.̂ The transformation ̂U  is a symmetry when 
it commutes with L,̂ that is, when UL LU=̂ ̂ ̂ ̂.

Getting a continuum theory from a mesoscopic description
The techniques to derive a continuum theory from a collective descrip-
tion of the individual elements of the material are known as coarse 
graining, averaging or homogenization36. In metamaterials described 
by linear equations of motion, homogenization can be achieved at the 
price of having frequency-dependent and momentum-dependent coef-
ficients, which introduce non-localities into the homogenized descrip-
tion of the material. In the general case, however, approximations are 
required to remove irrelevant degrees of freedom by exploiting a sepa-
ration of timescales using methods such as adiabatic elimination of 
averaging37,38. For instance, spatially periodic media, which are invariant 
under discrete spatial translations, can be treated using Bloch theory, 
whereas random media, which are on average translation invariant, can 
be described using disorder-averaging techniques. Correspondingly, 
the relation of the continuum fields to the microscopic degrees of 
freedom (which can be appropriately chosen combinations or disorder 
averages and so on) may change even though their physical meaning 
should always be the same. We refer to refs. 39–41 for more details 
including techniques and methods; to refs. 42–44 for interacting point 
particles; to refs. 45–47 for cases with less symmetry; to refs. 48–51 
for Bloch–Floquet techniques for spatially periodic media; and to 
refs. 29,52,53 for ensemble average methods for disordered media.

Elastic solids: a case study
We now consider a generalization of equation (2) that describes the 
propagation of elastic waves in solids known as Willis materials48, and 
that will serve as a case study throughout the Review.

The equation of motion of elastic waves in a solid takes the form

μ σ f∂ = ∂ + , (7)t i j ij i

in which μi is the density of linear momentum, σij the stress tensor, 
and fi the density of external body forces. In addition, we consider the 
constitutive relations

C u S u

μ S u ρ u

σ
= ~

∇
∂

or in index notation

σ = ∂ + ∂

= ~ ∂ + ∂

(8)
t

ij ijk k ijk t k

i ik k ij t j

ℓ ℓ

ℓ ℓ

 























μ ρ

C S
S

u
u

according to which the momentum density μi and the stress σij are pro-
portional to both the time and space derivatives of some displacement 
field u(t,r), which may or may not be the displacement of the centre of 
mass. This is in stark contrast with the behaviour of conventional solids 
discussed in the introduction, for which these constitutive relations 
are uncoupled.

In the constitutive relations in equation (7), the mass density ρ is 
no longer a scalar field, but a rank-two tensor that arises because the 
displacement field may not coincide with the displacement of the 
centre of mass, C is a rank-four elastic tensor, and the third-order ten-
sors S and ~S, known as Willis couplings29,52,53, can be seen as the phon-
onic analogue of bi-anisotropic tensors in electromagnetism54–57, whose 
local version is rooted in spatial asymmetry. As discussed in the intro-
duction, the quantities in equation (7) may be effective quantities that 
have to be properly defined on a case-by-case basis. In addition, all 
quantities in equation (7) may depend on the frequency ω and the 
wavevector q (for example, σij is σij(ω,q)), making them non-local in 
space and time: the products in equation (7) represent a convolution 
in space and time. In this case, the material coefficients like Cijkℓ may be 
complex valued to encode phase lags between stress and strain at a 
material point. Typically, Willis coupling coefficients are connected to 
a weak form of non-locality52,53 because the dynamic effective response 
of the medium depends on both the local response of the material point 
and its interaction with neighbouring heterogeneities, described by 
the gradients of the phononic fields. In the following, we define ‘local’ 
materials as those that are adequately described by linear response 
coefficients that do not depend on q (that is, in the q → 0 limit). This 
generally occurs if the microstructure of the medium is sufficiently 
small relative to the wavelength, leading the constitutive response at 
any material point to depend only on the fields at that point.

Breaking spatial symmetries
A bulk material, viewed from the continuum perspective, is invariant 
under all spatial translations, rotations and inversions. These are col-
lectively known as isometries and form the Euclidean group dE  (where 
d is the dimension of space). These symmetries underpin constraints 
and conservation laws. For instance, translation and rotation sym-
metries lead to linear and angular momentum conservation, respec-
tively58, and point-group symmetries guarantee that quantities with 
different symmetries are decoupled59–61. This makes their selective 
breaking an efficient tool to engineer wave propagation within artificial 
media, which is the focus of this section.

Breaking translation symmetry
Inhomogeneities in a medium, such as a spatial interface between two 
materials, break spatial translation symmetries. In such a system, the 
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conservation of the physical momentum μ that underlies the wave 
equations still holds, because it is related to the joint translation of 
the medium and the wave through Noether’s theorem. In contrast, the 
translation of the waves alone is not a symmetry because the medium is 
inhomogeneous. As a consequence, another quantity called the wave 
momentum is no longer conserved62–64. Intuitively, this can be seen from 
the fact that at an interface, the refracted and reflected waves carry dif-
ferent wavevectors from the incident field. The spatial repetitions of 
such interfaces can result in band foldings or more complex structures, 
and scattering at single interfaces can be designed to manipulate waves 
in both the near and far fields. These aspects are the focus of this section.

Phononic crystals. In a phononic crystal2, continuous translation 
invariance is broken, but the system remains invariant under a set of 
discrete translations collected in a group called a Bravais lattice65. This 
breaking of continuous translation invariance also partially breaks 
rotation and reflection symmetries: the remaining symmetries are 
captured in mathematical objects called space groups59–61. For instance, 
one could consider a version of equation (3) in which the elasticity 
tensor C(r) and the density ρ(r) depend on the position r in a spatially 
periodic fashion, such as ̂r r eρ ρ a( ) = ( + ), in which ea  ̂is a vector defining 
the discrete periodicity of the phononic crystal.

To analyse such a system, we use Bloch–Floquet theory59,65–67. In a 
nutshell, the spatial periodicity a→ +r r ê implies that the plane waves 
eiq⋅r and ei(q+G)⋅r, where ̂G e Za n n⋅ = 2π , ∈ , are indistinguishable, and so 
one can define the wavevector q on a reduced region called a Brillouin 
zone that has periodic boundary conditions. The wavevector space is 
therefore tiled with copies of a ‘first’ Brillouin zone centred around 
q = 0. The resulting wave propagation is captured by a band structure, 
consisting of a set of dispersion relations ωi(q) (and the corresponding 
vibrational modes) that are repeated periodically in the wavevector 
space outside the first Brillouin zone (the decomposition of vibrational 
modes on the different equivalent Brillouin zones describes how fast 
they spatially oscillate in various directions, which gives information 
on the behaviour of the system when an interface or a defect is present). 
This description encompasses and goes beyond the metamaterial 
picture, in which an effective continuum theory with modified material 
constants is used to describe the behaviour of the system probed at 
long wavelengths2,41,68. It can perturbatively be seen as the result of 
folding the dispersion relation of waves in a homogeneous medium 
into the first Brillouin zone, which can be further harnessed to control 
wave propagation by considering families of symmetries, as discussed 
in the section on generalized symmetries.

One of the key features of phononic crystals is that they can have 
bandgaps, that is, frequency bands where no wave propagation can 
occur. Mathematically, this can be understood using the ‘transfer 
matrix’ ω E ρT( , , ), which describes the propagation of waves with fre-
quency ω along a given direction through a finite region by relating the 
wave amplitudes on the left to those on the right68–71. For instance, the 
transfer matrix corresponding to the 1D version ρ u σ∂ = ∂t x

2  with 
σ = E∂xu is given by72,73

ϑ ϑ
ϑ ϑ



























u
σ

u
σ

Z
Z

= T with T = cos sin
− sin cos

, (9)R

R

L

L

−1

in which L and R mean left and right, and where Z = ρc2κ is the imped-
ance of the medium of dispersion relation ω = cκ with c2 = E/ρ, and ϑ = κh. 
In a lossless medium, the eigenvalues of the transfer matrix are, in 
general, of the form e q±i B, and the dispersion relation of the bands is 

given by ω qtr [T( )] = 2cos B, in which qB is the (dimensionless) Bloch 
wavenumber, which is real valued for propagating (Bloch) states and 
purely imaginary for non-propagating states. (When u and σ have more 
than a single component, T is a larger matrix and these expressions 
have to be adjusted accordingly.) For the particular T in equation (9), 
we find that qB(ω) = ϑ = ω/ch, so we recover the bulk dispersion relation. 
Consider now a phononic crystal obtained by alternating two media 
with different impedances Z1,2 ≡ Z(1 ± ϵ), corresponding to a stepwise 
variation of E(r) and/or ρ(r). The transfer matrix corresponding to the 
unit cell is T = T Tuc 1 2 (Ti is obtained from T in equation (9) by replacing Z 
with Zi). As ϑω ϵ ϵtr [T ( )]/2 = [ − cos(2 )]/( − 1)uc

2 2 , the inequality tr T ≤ 2 
does not always hold. When it does not, the Bloch wavenumber qB is 
not real valued: the corresponding frequencies ω correspond to the 
bandgap in which waves cannot propagate. The critical frequencies ω* 
at which solutions change from propagating (in the bands) to 
non-propagating (in the gap) are called band edges and correspond to 
exceptional points of the transfer matrix74–77.

As a consequence, exceptional points can arise in the complex 
wavevector space even in passive lossless media. It is also possible to 
design them by exploiting the coexistence of multiple wave polariza-
tions in planar elastodynamics. For instance, in elastic laminates with 
isotropic constituents, the polarization conversion between shear 
and dilatation waves can induce exceptional points even away from 
the edges of the Brillouin zone78,79. These conservative laminates can 
give rise to anomalous wave phenomena such as negative refraction78 
and beam steering78,79. By including an anisotropic component, it is 
also possible to break the symmetry of leftward and rightward waves 
and excite axially frozen modes with a finite transmittance despite a 
vanishing axial group velocity80.

Going back to dispersion relations, it turns out that all the band 
structures of 1D layered systems are encapsulated in a compact uni-
versal manifold (Fig. 2a for the two-layer case discussed above), which 
depends only on the impedance mismatches (not on the volume frac-
tion of the constituents nor on their specific physical properties) 
and from which it is possible to calculate the density of the gaps in 
the spectrum81,82. In Fig. 2a, the yellow part of the torus corresponds 
to gaps, its boundary to the band edges, and the band structure is 
constructed by wrapping a line (blue) around the torus.

The band folding approach can also be used at the subwavelength 
scale in the presence of locally resonant elements with a strong albedo 
close to resonance, as demonstrated by the structure-induced nega-
tive refraction of sound in crystalline metamaterials made of soda 
cans83,84 (Fig. 2b). In parallel, the existence and size of bandgaps are also 
constrained by the symmetry of the system85,86. Overall, the domain of 
phononic crystals led to the development of various advanced mechan-
ical properties including bandgaps for strong field confinement87, 
waveguiding88 and focusing89. Bandgaps have also been observed in 
internal gravity waves, a class of mechanical waves present in stratified 
fluids such as the oceans90. Besides, phononic crystals play a major 
role in the control of elastic polarizations, ranging from bandgaps 
with elastic polarization selectivity91 to multiphysics interactions in 
cavity optomechanics where strong interactions between photons 
and phonons can be obtained in phoxonic structures acting as dual 
photonic–phononic crystals92.

Broken translation invariance beyond phononic crystals. Phononic 
crystals (with their discrete translation invariance) are not the only way 
to produce structures that break translation symmetry while remain-
ing uniform bulk materials in some sense. For instance, quasiperiodic, 
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amorphous, hyperuniform or disordered systems can be seen as gen-
eralizations of phononic crystals. In these systems, slightly different 
approaches are required. Disordered and aperiodic systems cannot 
be handled using Bloch theory, as there is no translation invariance. 
However, these systems still have some regularity, which can be han-
dled using non-commutative geometry, in which the Fourier space 
is replaced by a mathematical object called a C*-algebra93–95. This has 
been applied to phononic topological states96–98 discussed in the next 
subsection. Quasicrystalline phononic structures, which can be seen 
as projections of higher-dimensional periodic structures in which the 

usual symmetry-based approach can be used, have also been exten-
sively studied99 for their bandgap properties100, waveguiding101,102, 
broadband asymmetric transmission103, topological pumping104,105 
and fractal rainbow trapping106 (Fig. 2c). In all these systems, non-local 
couplings can become important and affect wave propagation.

Engineering interfaces. The boundary of a medium is the most 
extreme case of spatial translation symmetry breaking. It is also an 
essential part in defining wave–matter interactions: the boundary 
permits interactions with the bulk. To engineer phononic devices,  
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we can either try to perform impedance matching to minimize the role 
of interfaces, or embrace them as an engineering knob. As an example, 
metasurfaces are 2D metamaterials that enable both control of surface 
waves in the near field and beam shaping in the far field through control 
of the structure and symmetries of the surface5.

Another approach consists in harnessing boundary states that can 
exist at the interface between a medium and air, or between two media. 
The existence of such interface states can be captured from a scattering 
perspective68–71, a description related to the transfer matrix approach 
mentioned above. When two good mirrors are placed face to face, they 
form a resonant cavity, where standing waves can be maintained until 
they are damped by losses, and whose resonant interaction with the 
environment is described by a scattering matrix S(ω) (Fig. 2d, left). 
These resonant modes are obtained by requiring that a round trip in 
the cavity leaves a wave in phase with itself. In other words, the dephas-
ing Δϕ picked during the round-trip should be a multiple of 2π. For a 
cavity of size Lc, Δϕ = 2k(ω)Lc + ϕL + ϕR, where k(ω) is the dispersion 
relation of the medium in the cavity, and ϕL/R the reflection phases on 
the left/right sides. Now, let us consider a cavity where the walls are 
replaced with a phononic crystal. For frequencies ω in a bandgap, the 
phononic crystal acts as a frequency-dependent mirror with reflec-
tion phases ϕL/R(ω) arising from the multiple interferences on the 
Bragg planes of the crystal. The solutions ω* of Δϕ(ω) = 0 [mod 2π] in 
the limit where Lc = 0 correspond to edge states (also known as Tamm 
states107–109). These edge states arise at the interface between the left 
and right phononic crystals, which act as a virtual cavity (Fig. 2d, right). 
This can be extended to cases where one of the media is vacuum or a 
boundary condition. In some instances, the presence of interface states 
can be traced to the existence of non-trivial topological invariants in the 
bulk110–114. Let us emphasize that this ‘bulk–boundary correspondence’ 
is not always valid115–118, and that alternative approaches to define bulk 
topology suggest that the origin of certain non-symmetry-protected 
edge states may still be traced to the bulk119,120.

Breaking inversion symmetry
Systems with inversion symmetry preserve the spatial symmetry or 
anti-symmetry of wavefield profiles, such as monopoles or dipoles. 

These can be related to different phononic physical quantities, making 
inversion-symmetry breaking a good design strategy for generalized 
bi-anisotropic and tri-anisotropic phononic media (Fig. 2e and Box 1). 
This is the focus of this subsection.

Willis coupling. As discussed, Willis coupling is described by the rank-
three tensors in equation (7). If inversion symmetry (r → −r) is present, 
the Willis coupling tensor Sijk(ω,q) must satisfy Sijk(ω,q) = −Sijk(ω,−q) 
(the same is true for S~). Hence, there is no Willis coupling in an inversion-
symmetric local material (that is, for Sijk(ω,q → 0)). This can be under-
stood from the fact that Sijk relates a vector and a second-order tensor, 
which do not have the same symmetries. Conversely, purposely break-
ing the inversion symmetry of the elastic impedance56,121,122 in meta
materials is a good design strategy to induce enhanced Willis couplings. 
As an example, the top panel of Fig. 2f shows the unit cell of an elastic 
structured beam made of resonant meta-atoms whose inversion sym-
metry is broken122. This directly results in a Willis coupling that relates 
the momentum (μz) and strain (∂xuz) within the medium. In addition to 
the elastic case, breaking inversion symmetry also yields Willis cou-
plings in the context of longitudinal sound propagating in fluids51,56,123–128. 
For instance, acoustic Willis couplings have been evidenced experimen-
tally by using a subwavelength asymmetric scatterer in a 1D impedance 
tube measurement129 (Fig. 2f, bottom).

We can gain insight on the microscopic origin of Willis coupling by 
sending a sound wave on a subwavelength scatterer (for which ka ≪ 1, 
where a is the size of the scatterer and k the wavenumber). When the 
object is mirror symmetric, it scatters a monopole field MA as a response 
to the local pressure p and a dipole field DA as a response to the local 
velocity v field, which is captured by a polarizability tensor (inset of 
Fig. 2g). When the scatterer breaks mirror symmetry with respect to 
the direction of incidence, however, both the pressure and the veloc-
ity contribute to both the monopolar and the dipolar scattered fields. 
These cross-polarizabilities correspond to the scattering version of 
Willis couplings124 and can lead to strong differences in the backward 
scattering from waves impinging from opposite directions130. The 
forward scattering remains the same as long as reciprocity holds. 
Breaking inversion symmetry within resonant scatterers can lead to 

Fig. 2 | Phononic phenomena induced by breaking spatial symmetries. 
a, Universal torus (obtained by connecting the opposite edges of a square, see 
inset) onto which all infinite band diagrams of 1D phononic crystals are mapped 
(main panel). The frequency ω acts as a time-like parameter defining a linear flow 

on the torus: 
→
ζ ω ω h c h c ζ ζ( ) = ( / , / ) mod π = : ( , )1 1 2 2

(1) (2) , such that different 
crystals are mapped to flows of different slopes ζ (2)/ζ (1); the gap region (yellow) is 
universal for crystals with the same impedance mismatch. b, Subwavelength-
scaled crystal made of hollow soda cans for negative refraction and superlensing 
of acoustic surface waves (the dashed red lines show the corresponding ray 
tracing). c, Quasicrystalline phononic lattice (Λ) stemming from an effective 
projection onto a quadratic curve (P(Λ)) that is graded along its length, leading to 
fractal rainbow trapping. d, Correspondence between a conventional resonant 
cavity of length LC made of two mirrors with reflection phases ϕL,R and described 
by a scattering matrix S(ω) (left) and a virtual cavity at the edge of a gapped 
phononic crystal, whose reflection phase ϕR(ω) depends on the operating 
frequency, hosting a boundary mode. e, Multiphysics couplings in a tri-anisotropic 
medium: Willis coupling, piezoelectricity and electromomentum coupling.  
The local part of these interactions stems from different symmetry breakings  
at the subwavelength scale (Box 1). f, The application of a constant force Fz, 
equivalent to the total momentum along the z axis, Pz, on an asymmetrically 
structured beam results in strain ∂xuz, demonstrating non-zero Willis coupling 

for flexural waves (top). Schematic of an asymmetric scatterer responsible for 
airborne acoustic Willis coupling (bottom). g, Magnitude of the measured 
acoustic polarizability components within an asymmetric Helmholtz resonator 
(inset), normalized by the theoretical bound 4ω−2. This shows maximal 
off-diagonal polarizabilities (αpv and αvp where p and v are the local pressure and 
velocity, respectively), which are scattering versions of acoustic Willis coupling, 
matching the conventional monopole and dipole polarizability. h, General model 
of an acoustic medium whose macroscopic effective response yields a dynamic 
mass density tensor (left). Acoustic metamaterial with membranes along one 
spatial direction, leading to hyperbolic wavefront propagation (right). i, An 
acoustic Bessel beam with a rotating phase profile in reciprocal space (top) is 
responsible for a vortex beam in real space (bottom) whose spiralling canonical 
momentum density p results in a non-zero integral orbital angular momentum 
〈LAM〉. The local velocity polarization yields an additional spin angular momentum 
density SAM. Panel b adapted from ref. 84, CC BY 4.0. Panel c adapted with 
permission from ref. 106, American Physical Society. Panel e adapted with 
permission from ref. 138, Elsevier. Panel f (top) adapted from ref. 122, CC BY 4.0. 
Panel f (bottom) adapted from ref. 129, CC BY 4.0. Panel g adapted from ref. 123, 
Springer Nature Limited. Panel h (right) adapted with permission from ref. 153, 
American Physical Society. Panel i adapted with permission from ref. 162, 
American Physical Society.
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cross-polarizabilities of the same order as the diagonal ones124, like 
in the split ring (Helmholtz resonator) in Fig. 2g. These can serve as 
building blocks for metamaterials showing strong macroscopic Willis 
couplings56, whose asymmetric acoustic responses in reflection are 
relevant to wavefront shaping for sound127,131–133 and elastic waves122,134,135, 
as well as for particle manipulation136.

Piezoelectricity and electromomentum coupling. Combined with 
the presence of electric charges, spatial inversion-symmetry breaking 

allows one to couple mechanical and electric fields. This electrome-
chanical coupling is a feature of piezoelectric materials and is directly 
related to the broken centrosymmetry of their atomic structure137. It is 
evidenced by the change in electric polarization in the material upon 
mechanical strain. In turn, the inverse piezoelectric effect corresponds 
to the generation of stress in response to an electric field. Accordingly, 
the stress in a piezoelectric material is related to the gradient of the 
displacement field and the gradient of the electric potential field via 
the relation σ C u B ϕ= : ∇ + ⋅ ∇T , where B is the piezoelectric coupling 

Box 1 | Breaking spatial symmetries
 

The elastodynamic and electrostatic response of a system is 
described by its constitutive relations that relate kinetic (stress σ, 
linear momentum μ, electric displacement D) and kinematic fields 
(displacement gradient ∇u, velocity ∂tu and electric field E = −∇ϕ). 
It is possible to generate couplings between these equations by 
carefully breaking the relevant spatial symmetries. The system then 
becomes tri-anisotropic and can be described by a constitutive 
tensor whose off-diagonal constituents correspond to coupling 
quantities induced by symmetry breaking142. The 1D mass–spring 
model in the figure gives a simplified picture of the relation between 
spatial symmetry breaking and the associated off-diagonal terms; a 
more rigorous description can be found elsewhere139. Starting from 
the case of two identical masses linked by a spring, the application 
of symmetrical forces of equal amplitude on both sides of the system 
does not change the position of the centre of mass. If the masses 
are different, however, the centre of mass moves by Δu, which 
differs from the displacement of the centroid. This results in the 
emergence of a non-zero linear momentum upon the application of a 
time-varying symmetrical stress σ, described by Willis coupling S ≠ 0. 
In addition, if the different masses have opposite electric charges, the 
time-varying symmetrical stress results in a non-zero global electric 

polarization Δp. In turn, this yields an electric displacement field 
D, which is described by a piezoelectric coupling B ≠ 0. Building on 
this model of piezoelectric coupling, we can couple two identical 
dimers, asymmetric in charge and mass, in a mirrored configuration. 
This corresponds to spatial-inversion-symmetry breaking of the 
piezoelectric coupling itself, which can be modelled by a three 
mass–spring system with both mechanical and electrical spatially 
symmetric features, preventing the existence of global Willis S = 0 
and piezoelectric B = 0 couplings. Nevertheless, the presence of an 
electric field E results in an asymmetric motion of the three charged 
masses driven by the Coulomb interaction Fq, which changes 
the position of the centre of mass of the system. This leads to the 
emergence of electromomentum coupling, W, between the applied 
time-varying electric potential and the linear momentum. Finally, a 
global anisotropy of the medium — different responses as a function 
of the excitation direction — can be embedded into a dynamical mass 
density tensor. Although additional phenomena should be taken into 
account for the theoretical description of these couplings in a real 
material142, this simplified mass–spring model highlights the origin of 
the dynamic effective field-coupling properties as spatial symmetry 
breaking at the microscopic scale.
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tensor in stress-charge form and ϕ is the electric potential. Similarly, 
the electric displacement field D in a piezoelectric medium is a function 
of the same fields through the relation D = B ⋅ ∇u − A ⋅ ∇ϕ, where A is 
the dielectric permittivity tensor.

Breaking inversion symmetry from the viewpoint of the piezo-
electric properties of the medium leads to an emergent constitutive 
coupling between electrostatics and dynamics, as was first shown 
using source-driven continuum homogenization138, and thereafter 
using retrieval methods121 and discrete models139. In these systems, the 
electric polarization and velocity fields, as well as the linear momen-
tum and the electric field, are coupled by the ‘electromomentum’ 
couplings138 (Fig. 2e). As a result, each one of the kinetic fields (stress, 
linear momentum density, electric displacement) depends on all three 
kinematic fields (strain, velocity, electric field; Box 1), and therefore 
such materials are called tri-anisotropic materials. In symbolic matrix 
notation, the constitutive relations of electromomentum-coupled 
materials take the form






















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






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~
~ ~

−
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, (10)t

σ
μ ρ
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C S B
S W
B W A

u
u

where ~W and W are the second-order electromomentum coupling 
tensors140. Like the Willis couplings56 and the magnetoelectric 
couplings141, the electromomentum couplings are required to ensure 
that the constitutive relations satisfy physical constraints142. Unlike 
Willis couplings, the electromomentum effect depends on the circuit 
conditions, yielding an intrinsic electrical tunability for wave 
manipulation121,143,144 and scattering145. In addition, recent works analys-
ing the polarizability of electromomentum-coupled scatterers145,146 
have shown that the polarizability tensor must consider both electric 
and magnetic field scattering owing to the time-varying nature of all 
fields, and that the polarizabilities coupling mechanical and electric 
fields can reach the same magnitude as the diagonal terms, even when 
the Willis coefficients vanish121.

Breaking rotation symmetry
Breaking rotation symmetry permits us to engineer artificial media 
beyond isotropic constraints, providing tensorial richness to their 
mechanical response (Box 1). Rotational symmetry of the underlying 
medium also underpins the conservation of the angular momentum 
of the waves, which makes its breaking an efficient tool to control 
the chirality of phononic fields. These aspects are the focus of this 
subsection.

Anisotropy engineering. Isotropic materials are endowed with full 
rotation symmetry. In these systems, waves propagate in all direc-
tions in the same way (equations (1) and (2)). In contrast, anisotropic 
materials do not have full rotation invariance. When they are homo-
geneous, the remaining symmetries are contained in a mathematical 
object called a point group59,60. As a consequence of anisotropy, mate-
rial properties must be encoded in (anisotropic) tensors, such as the 
elastic tensor C in equation (3). This has important implications for 
wave propagation3,4,147. As an example, consider a 2D collection of sub-
wavelength resonators consisting of circular cavities carved in a rigid 
medium, which individually host a mass connected to the boundary 
by springs29,148 (Fig. 2h, left). In such a system, the measurable displace-
ment field does not necessarily coincide with the displacement of the 
centre of mass, because the internal masses may be hidden. Hence, 

the velocity v associated with the displacement field and the linear 
momentum density μ are related through μ = ρv through an effective 
mass density tensor of the form















ρ
ρ ρ

ρ ρ= , (11)
xx xy

yx yy

whose components can be either positive or negative, corresponding 
to an in-phase or out-of-phase macroscopic response of the medium, 
respectively29. Acoustic waves in such a 2D anisotropic system  
can be described by a generalization of equation (1) in which3 
β p ρ p∂ = ∂ ([ ] ∂ ) = 0t i ij j

2 −1 , where ρ−1 is the matrix inverse of ρ. In a coordi-
nate system where the mass density tensor is diagonal, the resulting 
dispersion relation is

ω
q

β ρ

q

β ρ
= + . (12)x

xx

y

yy

2
2 2

This expression directly shows that the anisotropy affects the 
shape of the isofrequency contours of the system, which describe the 
spatial properties of wave propagation in the medium at the operat-
ing frequency ω in Fourier space. Indeed, depending on the relative 
signs of the eigenvalues of the mass density tensor, the isofrequency 
contours may have different topologies (open or closed), with funda-
mentally different consequences on wave behaviour149. As an example 
of open contour topology, phononic hyperbolic metamaterials support 
extremely anisotropic properties, such as broadband, diffraction-free 
directional ray-like propagation, negative refraction and enhanced 
wave–matter interaction150–152. These features have been evidenced 
experimentally for sound using membranes in a 2D waveguide153 
(Fig. 2h, right). Other acoustic implementations have been demon-
strated in the context of hyperlenses154,155, as well as in elastodynamics 
using patterned plates156–159 and asymmetric pillars160. Following recent 
advances in nano-optics151, sonic hyperbolic metasurfaces have also 
been proposed161. Rotation symmetry can be broken further in the case 
of multilayer phononic structures, leading to extremely anisotropic 
and reconfigurable wave propagation, as discussed in the section on 
twistronics.

Controlling the angular momentum of waves. In the same way that 
a phononic wavefield carries energy and linear momentum, it can also 
carry angular momentum J = LAM + SAM, which can be decomposed into 
an orbital angular momentum LAM and a spin angular momentum SAM 
(ref. 13). The orbital angular momentum LAM = r × μ is associated with 
rotations of spatial patterns in the wavefield and typically manifests as 
helicoidal wavefronts, as shown in the top panel of Fig. 2i in the case 
of an acoustic Bessel beam162. The spin angular momentum is associ-
ated with rotations of the polarization associated to the vector part of 
the wavefield. In acoustic waves, this means that one has to take into 
account the velocity field in addition to the scalar pressure field13,163–165. 
The corresponding spin density SAM = Im(ρ0v* × v)/2ω, where ρ0 is the 
density of the fluid and v its velocity field, vanishes upon integra-
tion over the entire medium in homogeneous media, but it can be 
non-zero in the presence of field inhomogeneities162,165 and for surface 
waves166–168. Hence, both elastic169,170 and acoustic waves can carry a spin 
angular momentum (Fig. 2i, bottom).

Based on this, one can directly manipulate the angular momentum 
of phononic waves by engineering the breaking of rotation invariance 
of the propagating medium. For instance, it is possible to generate 
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LAM in both acoustics and elastodynamics by using spiral-shaped tube 
sections171,172 or with multiple sources with tailored phase delays173. 
One can also implement such rotation-symmetry breaking in the reso-
nant structure of metasurfaces174–179 to induce helicoidal wavefronts. 
Besides, the reduced planar rotation symmetry in some topological 
phononic crystals can be related to modes showing a local orbital 
angular momentum, which can induce vortices in the far field180,181. 
Breaking rotation invariance can also lead to spin–momentum locking, 
in which the direction of linear momentum determines the direction 
of SAM (ref. 164), leading to spin-dependent propagation and selective 
wave routing at waveguide intersections182.

A phononic spin–orbit coupling between orbital and spin angular 
momenta can also be induced by a mismatch between the rotation sym-
metries of the unit cell and the lattice. For instance, the elastic version 
of this behaviour has been obtained in microstructured mechanical 
materials183,184 that twist in a specific direction when pushed along their 
axis, and proposed in quasicrystals185. In acoustics, spin–orbit coupling 
emerges in metastructures of dipolar modes with twisted intercell 
couplings, resulting in chirality-induced negative refraction186. These 
ideas have been applied in the context of imaging187, multiplexing188 
and particle manipulation189–192.

Breaking non-spatial symmetries
Usual phononic materials and their idealized versions show several 
non-spatial symmetries that are tightly connected to the specificities 

of the temporal dimension: reciprocity, time-reversal invariance, 
time-translation invariance and energy conservation. These symme-
tries, which are related to each other (Box 2), impose strong constraints 
on the behaviour of waves. Therefore, the combined breaking of spatial 
and non-spatial symmetries provides numerous opportunities for 
advanced phononic wave engineering, which is the focus of this section.

Breaking reciprocity
Spatial asymmetries can tailor the reflection and absorption of waves 
from opposite sides of a material, but are not sufficient to produce a 
genuine asymmetry in the transmission of waves between two points in 
space, like one would have in a diode193. As a wave propagates through 
a material, it undergoes a phase shift proportional to the distance trav-
elled and an amplitude change due to the presence of losses. Usually, 
these modifications do not depend on whether the wave travels to the 
right or to the left, even in a inhomogeneous and arbitrarily shaped 
medium130. The reason for that is a discrete non-spatial symmetry 
known as reciprocity, which relates incoming and outgoing waves in 
a scattering process (Box 2). Non-reciprocal phononic media, where 
this symmetry is broken, can asymmetrically transmit mechanical 
energy, with potential applications in information and heat transport.

In practice, most ways of breaking reciprocity entail breaking spa-
tial symmetries as well as time-reversal invariance (t → −t), another fun-
damental discrete non-spatial symmetry that corresponds to reversing 
the flow of time, like watching the dynamics backwards. From the 

Box 2 | Non-spatial symmetries from a scattering perspective
 

The scattering matrix S summarizes how waves are reflected and 
transmitted (scattered) off an object68–71. It has the same content as 
the transfer matrix, organized in a different fashion. Mathematically,  
it relates the amplitudes sβ

in and sα
out or incoming and outgoing waves 

through different ‘channels’ (labelled by α, β…) through =s S sα αβ β
out in.

The channels can be physical (waveguides) or abstract (different 
angles or polarizations).

In terms of the scattering matrix, the fundamental non-spatial 
symmetries that can be present in a phononic medium are193,195,429 
reciprocity S = ST, energy conservation SS† = 1 and time-reversal 
invariance SS* = 1. These symmetries are different from each other, 
so it is possible to have a medium response such as reciprocity 
without energy conservation (for example in a passive lossy medium). 
However, any two of the symmetries imply the third, so a lossless 
medium that is also invariant under time reversal must be reciprocal.

The scattering matrix associated to a set of resonant modes can 
be computed starting from coupled-mode theory. When the system 
is coupled with the outside environment (through the channels α), 
equation (6) becomes34,35

a L a a W s s S s W aΓ and ~ , (20)m mn n mn n mα α α αβ β αn n
in out 0 in= − + = +

in which the operator L describes the behaviour of the uncoupled 
system (H = iL would be the Hamiltonian), Γ and W represent the loss 
and gain in the system due to exchanges of waves with the channels, 
respectively, W~  represents the emission of waves in the channels from 
the resonant modes, and S0 is the scattering matrix that the system 
would have if there were no resonant modes, that is, when a = 0. 
Probing the system with monochromatic waves at frequency ω 

eventually imposes a(t) = Ae−iωt. Eliminating the resonant modes a(t), 
we then find that the effective scattering matrix such that sout = Seffsin 
reads

= − − + −S S W L ω W~ [ Γ i ] . (21)eff 0 1

This equation is known as the Mahaux–Weidenmüller formula430.  
In a system where energy is conserved, S0 is unitary (S0†S0 = 1), L is 
anti-Hermitian (L = −L†), and one must have ∂t∥a∥2 = ∥sin∥2 − ∥sout∥2, 
leading to a self-energy = W WΓ 1/2 ~ ~†

 and to W W S~ † 0= − . When in 
addition S0 = 1, the Mahaux–Weidenmüller formula reduces to the 
more familiar form = + − + −S W L WW ω W1 [ i ]eff † 1

2
† 1 . In this framework, 

losses can be modelled by additional channels α with s 0α
in =  (on 

average), and for which one does not monitor the output sα
out. Indeed, 

any purely dissipative (positive-semidefinite) loss term Γ can be 
modelled this way431 by adding enough ports and setting W ∝ Γ1/2. 
From this scattering perspective, we reach three conclusions: 
engineering the coupling of a closed system to a radiation continuum 
is a way to induce effective non-Hermitian properties; the symmetries 
of L0 and of the couplings directly influence those of S; and one can 
engineer poles and zeros of S, and even operate near them by 
exciting the system with complex frequencies. When the operator L 
depends explicitly on time, it is not possible to focus on a single 
frequency ω, and the above formalism has to be adjusted to account 
for the energy transfer to frequency harmonics. Note that the 
scattering matrix S and the coupling operators W and W~  introduced in 
this box are different from and unrelated to the Willis and 
electromomentum coupling tensors S, W and W~  in equation (10).
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perspective of wave propagation, time-reversal invariance is related to 
the microscopic reversibility of the medium where waves propagate, 
which is violated by the presence of external biases such as magnetic 
fields or rotation. Yet in systems where energy is not conserved, it is in 
principle possible to have non-reciprocal systems that are time-reversal 
symmetric194,195. We refer the reader elsewhere14,193,195–198 for more details 
on reciprocity in wave propagation.

Breaking reciprocity through an external bias. A common way of 
breaking reciprocity is to impose an external bias whose sign reverses 
under time-reversal symmetry, such as a magnetic field. Microscopic 
reversibility implies that the symmetry of the transmission coefficients 
is preserved only by reversing the bias when flipping the propagation 
direction. In contrast, holding the bias constant when interchang-
ing source and receiver positions typically leads to a non-reciprocal 
response199. This works well in electromagnetism197 because the propa-
gation of light in certain materials is strongly influenced by available 
magnetic fields. It is also possible with phonons, for instance through 
magnetoacoustic couplings200,201, but the effect is often weak. For 
instance, non-reciprocity induced by magnetoacoustic effects has 
been predicted and observed in surface acoustic waves202,203, and 
can be strongly enhanced by the coupling with non-reciprocal spin 
waves204–206. Alternatively, one can use other external biases such as 
fluid flow207–210, rotation211 or odd/Hall viscosity.

In this context, the use of resonant components enables strong 
non-reciprocal effects with flow speeds much lower than the speed of 
sound. For example, a highly non-reciprocal acoustic circulator for 
audible sound was created using a ring cavity with a fluid spinning at 
a fraction of the speed of sound212 (Fig. 3a). In the absence of an external 
bias, the two lowest-frequency modes in the circular cavity are degen-
erate with frequency ω0. These correspond to clockwise and counter-
clockwise propagating waves, for which the pressure field takes the 
form p±(r,ϕ) ~ e±iϕ where ~ indicates proportional to, in polar coordi-
nates, that can be combined into standing waves. When a background 
velocity field v is imposed (for example with fans), the frequencies  
of these modes undergo a Doppler shift Δω±/ω0 ~ ±v/c, leading to  
an acoustic Zeeman effect212,213 that lifts the degeneracy. The  
resulting system can be captured by the coupled modes equation 

̇a ω γ a W s= (i − ) + α α± ± ± ± ±,
in, in which ∓W γ α= 2 /3 exp( 2π/3( − 1))α±, ±

 rep-
resents the coupling to the three equispaced channels in Fig. 3a. Apply-
ing equation (21) gives the corresponding scattering matrix. In the 
simplified case where γ± = γ and the system is excited at ω = ω0, we find 
that the transmissions between the channels 1 and 2 are

∣ ∣⇄T S
γ γ ω

γ ω
= =

4 ( ± 3 Δ )

9( + (Δ ) )
, (13)1 2 12/21

2
2 2

2 2 2

from which we see that T1→2 ≠ T2→1 when Δω ≠ 0, meaning that the system 
is not reciprocal, and that it is possible to tune Δω to have T1→2 = 0.

This design was later used as a basis for theoretical and experimen-
tal investigations in topological acoustics in which the rings are put on 
a lattice214–216, for non-reciprocal wave manipulation in the context of 
Janus metasurfaces217 and to create non-reciprocal mode conversion 
in an elastic waveguide218. Alternatively, it is possible to have the fluid 
flow by itself, if it is made of self-propelled active components112,219–221.

It is also possible to create non-reciprocal Willis couplings in 
spatially symmetric systems through external biases whose sign 
reverses under time-reversal symmetry. Going back to the example of 
Fig. 2g, the normalized cross-polarizabilities αvp and αvp relating the  

acoustic monopole MA = αppp + αpvv and dipole DA = αvvv + αvpp to the  
pressure and velocities are also constrained by reciprocity, which 
imposes124 = −vp pv

Tα α . This constraint can be lifted by a constant bias222, 
as in the spatially symmetric acoustic resonator embedded with a 
rotating flow in Fig. 3b. In a lossless system, this leads to ~ = ~

vp pv
Tα α   

(a situation referred to as a scattering version of odd Willis coupling in 
ref. 222), as showcased by the overlapping blue and red lines on the 
right panels of Fig. 3b. This results in a different power extinguished 
by the scatterer when excited from the left or from the right, in stark 
contrast with the reciprocal cross-polarizabilities obtained through 
inversion-symmetry breaking alone.

Breaking reciprocity by combining spatial asymmetries and non-
linearity. In nonlinear systems, it is possible to break reciprocity 
dynamically, without an external bias223,224, for instance by combin-
ing spatial asymmetries with a medium whose properties depend 
on the amplitude of the wave. Putting a lossy material on one side 
of the nonlinear medium effectively makes the wave interact with a 
different medium when excited from either side, making the trans-
mission direction-dependent, that is, non-reciprocal. This simple 
mechanism has been implemented and studied fundamentally223,225–228, 
together with other nonlinear schemes based on related phenom-
ena, such as phononic bandgaps229,230, frequency conversion231–233, 
self-demodulation227,234, prestretched linkages235 and hysteresis236. 
The combination of spatial asymmetry and nonlinearity is a common 
ingredient in all these schemes, as showcased by the non-reciprocal 
phononic wave transmission stemming from the intrinsic nonlin-
ear acoustic radiation pressure at an interface between water and  
air227 (Fig. 3c).

Non-reciprocal continuum phononic media. In the case of continuum 
media, reciprocity can be framed as a link between two different exci-
tations and the corresponding responses. This constraint is known 
as Maxwell–Betti or Lorentz reciprocity. In the case study that we 
introduced at the beginning of the Review, it implies that237

ℓ ℓC C S S ρ ρ= ~ = = . (14)ijk k ij ijk jki ij ji

For materials with electromomentum coupling, reciprocity fur-
ther implies that W W~ =ij ij

142,238. When the elastic tensor is real valued, 
breaking its major symmetry (Cijkℓ ≠ Ckℓij) also requires the violation 
of energy conservation. The same holds for the mass density tensor: 
active metamaterials with a non-reciprocal ρij have been realized using 
feedback loops239. This is not the case for Willis coupling, for which the 
constraint due to energy conservation is different126,237. As we discussed, 
one of the simplest ways, mathematically, to obtain Willis coupling 
is to consider sound waves in a moving fluid, for which we obtain an 
energy-conserving non-reciprocal bi-anisotropic coupling240. Starting 
from the linearized conservation of mass (β∂tp = −∂xv) and of linear 
momentum (ρ0∂tv = −∂xp), which combine into equation (1), and per-
forming a Galilean boost (∂t → ∂t − v0∂x) to account for the motion of 
the fluid at speed v0, we end up with
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where Oξ ζ v βρ v= = + ( )0 0 0
2  is cast as purely non-reciprocal acoustic 

Willis couplings. A similar feature occurs in colloidal solids driven by 
a flow47,241,242. Non-reciprocal Willis couplings have also been discussed 
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a   Acoustic circulator based on a bias flow

d   Shock with transverse flow in a chiral fluid with odd viscosity
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in passive systems such as moving fluids in zero-index metamaterials240. 
To induce strong non-reciprocal Willis effects going beyond the limita-
tions imposed by passivity243,244, active mechanisms such as electronic 
feedback loops245,246, spatiotemporal modulation247 and thermoacoustic 
amplifiers248 have also been considered.

In (meta)fluids and viscoelastic media, non-reciprocal responses 
can also be encoded in viscosities that violate reciprocity, known as odd 
or Hall viscosities249,250, corresponding to phonon Hall viscosities251–253 
in the context of phonons in solids. The Navier–Stokes equations take 
the general form

ρ v v p(∂ + ∂ ) = −∂ + ∂ σ , (16)t j j i i j ij

where ℓ ℓσ σ η v= + ∂ij ij ijk k
h  is the stress tensor, split into a hydrostatic and 

a viscous part. The viscosity is encoded in a tensor ηijkℓ, and reciprocity 
imposes that ηijkℓ = ηkℓij. This constraint is, for instance, broken in chiral 
fluids made of actively spinning components and in magnetized pol-
yatomic gases and plasma250. Consequences include non-reciprocal 
wave propagation115,249,254–260, which can affect turbulence in the non-
linear regime261 as well as topologically protected boundary 
modes112,221,256 and nonlinear shock waves in compressible fluids115,254,255 
(Fig. 3d) and biological tissues262 (Fig. 3e). These are typically mani-
fested in transverse responses, for instance in the velocity field along 
the piston in a shock (colour in Fig. 3d) or edge flows (red arrows in 
Fig. 3e) that are a response to the flows towards the middle (blue arrows) 
due to the proliferation of cells in tissues.

Breaking time-translation invariance
Breaking time-translation invariance entails changing the physical 
properties of a system in time, so that wave excitations effectively see 
a different system or medium at different times. These time-dependent 
modulations require an active drive, which may inject or remove energy 
from the system. They can be designed to tune spatial and non-spatial 
symmetries of the system almost at will, at the price of a higher com-
plexity and cost in design and operation compared with static systems. 
This approach permits one to adapt ideas related to the breaking of 
spatial translation invariance, although the specific nature of the tem-
poral dimension and its ties to causality provide additional physical 
constraints that result in fundamentally different wave phenomena. 
In the case of periodic time modulations, time-translation invariance 
remains discrete, yielding the emergence of frequency harmonics. 
Single temporal interfaces result in different laws of refraction and 

reflection stemming from the conservation of momentum rather than 
frequency as in their spatial counterparts. These aspects of phononic 
time-varying media are reviewed in this section.

Time-periodic modulations. Although the time dependence can be 
arbitrary, theoretical and practical investigations have largely focused 
on periodic temporal modulations, because these are easier to handle. 
These driven systems are called Floquet systems263–266, and sometimes 
‘time crystals’; we emphasize that this is a distinct concept from time 
crystals in statistical physics267–270 and biology271,272.

In Floquet systems, the dynamics are described by a periodically 
driven Hamiltonian H(t) obeying H(t) = H(t + nT0) for any integer n, 
where T0 is the modulation period. In contrast with time-independent 
systems, in which the linear response only occurs at the excitation 
frequency ω, periodically driven systems may show a response at har-
monic components ω + nω0 ( Zn ∈ ) spaced by ω0 ≡ 2π/T0 (ref. 273), 
which are referred to as sidebands. Mathematically, the Floquet 
theorem263 decomposes the evolution operator U t V t( ) = ( )e tHi eff associ-
ated with H(t) into a T0-periodic micromotion V(t) = V(t + T0) and a 
long-time evolution described by a time-independent effective Ham-
iltonian Heff, called the Floquet Hamiltonian. For instance, Fig. 3f shows 
a tight-binding lattice of trimers of cavities whose acoustic capacitance 
is modulated in time274, which shows sidebands as a repetition of the 
band structure along the frequency dimension. Floquet modulations 
can also result in wavenumber gaps, rather than frequency gaps as in 
their spatial counterparts. These host both amplified and damped 
modes that can exist because of the lack of energy conservation, as 
investigated in the context of spatial filtering275.

It is possible to break time-reversal invariance in Floquet systems 
by choosing a H(t) that is not an even function of time. (More precisely, 
we want to break time-reversal invariance ΘH(t)Θ−1 = H(−t) in which Θ 
is the time-reversal operator. When a basis can be chosen so that H(t) 
is real and Θ acts trivially, then this constraint reduces to H(t) = H(−t), 
but this is not always true.) This is what happens in the modulated 
lattice of Fig. 3f, where the band degeneracies of the static medium 
are lifted upon dynamic modulation due to broken time-reversal sym-
metry induced by a spatially rotating phase profile274. This can induce 
non-reciprocal phonon effects with polarized coherent light276. A nota-
ble example is the phonon-mediated control of the magnetic properties 
of a lattice of spins to induce giant paramagnetism277, phonon-driven 
magneto-valleytronics278, or ferroelectricity279. Slower Floquet modula-
tions that break time-reversal symmetry can effectively impart some 

Fig. 3 | Phononic phenomena induced by breaking reciprocity, time-reversal 
and time-translation symmetry. a, An acoustic circulator based on a three-
port cavity with embedded flow (left) at the resonance frequency produces 
zero transmission from port 1 to 2, and full transmission from port 1 to 3 (right). 
b, Experimental measurement of acoustic polarizations corresponding to odd 
Willis coupling induced by time-reversal symmetry breaking within a biased, 
spatially symmetrical scatterer. Here, the bias consists of an asymmetric flow, 
obtained with a motorized fan. c, Non-reciprocal ultrasonic transmission 
induced by the combination of spatial asymmetry and nonlinearity stemming 
from the acoustic radiation pressure at the interface between air and water: no 
signal is transmitted through the device in the backward configuration (left), 
while sound transmission mediated by radiation pressure in the fluid is permitted 
in the forward configuration (right) d, A shock wave propagating in a chiral fluid 
yields a directional transverse flow, as evidenced by the non-zero velocity uy in the 
direction orthogonal to the shock (colour bar). e, Chiral biological tissues exhibit 
odd viscoelasticity, leading to transverse responses (red arrows) to constraints 

generated by cell proliferation and extrusion (blue arrows)262. f, Band structure of 
a Floquet topological insulator for sound (left) based on unit cells with a periodic 
time modulation of the acoustic capacitance C = C0 + ΔC(t) at the frequency ωm 
with a directional angular phase profile (top right), resulting in a topologically 
protected, non-reciprocal acoustic leaky-wave antenna (bottom right). 
g, Flexural wavepackets crossing a spatiotemporal interface upon the abrupt 
deformation of a soft elastomer (left). The experiment is carried out by abruptly 
stretching the medium using a motor while mechanical waves are launched in the 
medium (top right). This results in the non-conservation of both wavenumber 
and frequency between the impinging and refracted wavepackets, as shown in 
the real space–time diagram (middle right) and frequency–wavevector diagram 
(bottom right). This leads to different behaviour depending on the excitation 
direction. Panel a adapted with permission from ref. 212, AAAS. Panel b adapted 
from ref. 222, CC BY 4.0. Panel c adapted from ref. 227, CC BY 4.0. Panel d adapted 
from ref. 254, Springer Nature Limited. Panel f adapted from ref. 274, CC BY 4.0. 
Panel g adapted with permission from ref. 303, American Physical Society.
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form of momentum and allow for strong non-reciprocal280–287 or topo-
logical responses274,288,289, or non-reciprocal acoustic devices such as 
robust leaky-wave antennas (Fig. 3f). It is also possible to emulate 
Floquet physics through the propagation of waves in static but spatially 
modulated media290–292.

Time interfaces. Recent works have focused on the temporal analogues 
of spatial interfaces, which induce novel scattering wave phenomena 
that emerge when sudden, non-adiabatic changes occur to the proper-
ties of a medium without breaking spatial-translation invariance. For 
example, a temporal interface can be induced in a uniform medium 
in which the spatially uniform refractive index suddenly changes. 
Temporal reflections and transmission emerge at such temporal 
interfaces, with associated temporal Fresnel coefficients and a con-
servation of overall momentum instead of frequency and energy due 
to broken time-translation invariance but preserved spatial-translation 
symmetry293,294. Specifically, the incident wave is time reversed upon 
temporal reflection (negative frequency), in stark contrast with the 
conventional mirrored spatial reflection (negative wavevector). Vari-
ous works have investigated these phenomena, both theoretically and 
experimentally, in 1D and 2D295–298. An example is the refocusing of water 
waves at the surface of a basin undergoing a rapid change in gravity295, 
effectively behaving as an instantaneous version of a time-reversal 
mirror299. Soft elastomers300,301, whose material properties depend on 
the medium deformation302, are also a promising platform to imple-
ment spatiotemporal interfaces for phononic waves303, in which a spatial 
interface travels at a finite velocity. The result of this interface breaking 
both spatial and temporal translation invariance are shown in Fig. 3g, 
demonstrating the non-reciprocal conversion of both wavenumber and 
frequency for a wavepacket impinging across the interface.

Breaking energy conservation
On a fundamental level, energy conservation is a consequence of 
time-translation invariance. In this section, we focus on systems where 
energy is not conserved, but that are effectively described by a 
time-independent equation. In this case, energy conservation means 
that some operators are Hermitian or anti-Hermitian. Consider the 
coupled-mode theory equation (6). If the energy E of the waves is pro-
portional to a a a= ∑ *m m m

2  (where the star represents complex con-
jugation), then ∂tE ∝ ∂t〈a,(L + L†)a〉, in which 〈⋅,⋅〉 is a Hermitian inner 
product and † represents the conjugate transpose, and so energy is 
conserved when L = −L†, that is, when L is anti-Hermitian. In this case, 
the eigenvalues of L are purely imaginary and correspond to the fre-
quency of oscillation of the modes. Equivalently, it means that the Ham-
iltonian H = iL is Hermitian. Conversely, systems with loss and gain are 
described by non-Hermitian (or non-anti-Hermitian) operators, leading 
to various properties common to these systems304. In this section, we 
discuss how a careful engineering of energy balance through gain and 
losses can be used to tailor wave propagation in lossy and active systems.

Balancing losses with gain in PT-symmetric systems. Systems 
in which the eigenvalues of the Hamiltonian H (the frequencies of 
oscillation) are purely real are called pseudo-Hermitian304,305 or 
PT-symmetric. This includes lossless systems in which H = H†, but also 
systems where gain and loss are present but balanced. The label PT 
originally referred to the combination of parity P (space inversion) and 
time-reversal T, but it turns out that a more general class of systems 
shows the same mathematical properties306,307, for which there is an 
anti-unitary operator PT with (PT)2 = 1, such that PTH = HPT. In systems 

with (generalized) PT-symmetry, energy is not conserved in general, but 
when PT-symmetry is not spontaneously broken, it is effectively con-
served when the system oscillates in a single eigenmode. A related sym-
metry known as anti-parity–time (APT) symmetry (in which PTH = −HPT) 
has also been considered to control heat transfer308. When H = iL, H 
is PT-symmetric only if L is APT-symmetric, and conversely309.

For example, consider a lossy resonator with complex eigenfre-
quency ω0 + iγ and couple it to an identical resonator with gain. We may 
aim at compensating the decay in the first resonator by choosing the 
amplification rate of the second one to be exactly equal to the loss rate 
of the first, that is, with intrinsic eigenfrequency ω0 − iγ. If κ denotes 
the rate of energy coupling between them, the Hamiltonian becomes


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The corresponding eigenvalues are ω κ γ± −0
2 2, and the eigenvec-

tors are proportional to γ κ γ κ[i ± − , ]2 2 T. In the weak-coupling limit 
where κ is small, the system supports two distinct modes, with complex 
conjugate eigenvalues, close to those of the individual resonators. One 
mode is mostly localized in the gain resonator, and it grows in time, 
while the other decays in time at the same rate, as it mostly resides in 
the lossy resonator. An interesting phenomenon happens in the oppo-
site regime of strong coupling, where κ > γ. When the energy has time 
to circulate back and forth between the resonators before decay or 
gain happens, gain and loss effectively compensate each other, and 
the eigenvalues of the system (although described by a non-Hermitian 
matrix) are purely real, that is, the modes do not grow or decay in time. 
This demonstrates the possibility of engineering non-Hermiticity and 
symmetries in a useful way, and the opportunities provided by  
PT-symmetry in the design of resonant phononic systems310–312.

The eigenvectors of non-Hermitian matrices no longer neces-
sarily form a complete basis, and are no longer orthogonal. Extreme 
cases occur where two eigenvectors become collinear and share the 
same eigenvalue, a situation known as an exceptional point313–318. This 
happens when κ = γ in equation (17), for which H is not diagonalizable. 
The coalescence of the modes associated with the exceptional point 
has been evidenced in a two-level system consisting of two tightly 
coupled acoustic cavities with controllable asymmetric dissipation314 
(Fig. 4a). Moreover, the form and topology of the Riemann sheets 
formed by the eigensurfaces around an exceptional point has sparked 
various studies, such as the effect of dynamic encircling of exceptional 
points316,319 to control the mode transmission, leading to optimized 
sound absorption320, or the use of exceptional points for sensing321,322.

Scattering in PT-symmetric systems. The scattering matrix S (Box 2) 
of a lossless system is unitary, and in the steady state the outgoing 
power is always equal to the incident power. Gains and losses affect 
this property and make the scattering matrix non-unitary. In particular, 
PT-symmetric systems can restore the flux conservation when operated 
under proper conditions ( just like PT-symmetric cavities show no decay 
in the strong coupling limit when operated at a single eigenmode). In 
the case of scattering, PT-symmetric systems can support anisotropic 
transmission resonances323, such that the system is totally transparent 
from one side, like a lossless system, but it strongly reflects from the 
opposite side. This response has been experimentally realized in a 
two-port acoustic system with active components324 (Fig. 4b). Under 
this condition, gain does not simply compensate losses (S12 = S21  = 1), but 
it also cancels the reflection of the system from the lossy port (S11 = 0). 

http://www.nature.com/natrevmats


Nature Reviews Materials

Review article

Excitation of the system from the opposite side yields strong reflec-
tions, despite the fact that full transmission is supported because of 
reciprocity, which is possible because energy conservation is broken by 
the presence of gain and loss. By extending this concept, it is possible 
to turn a complex disordered acoustic system, initially opaque, into a 
completely transparent one, by adding a distribution of gain and loss 
tailored to counteract the arbitrary impedance fluctuations initially 
present325. This results in a constant-pressure sound wave within an 
inhomogeneous sample consisting of a 1D array of active acoustic 
scatterers (Fig. 4c). Applications related to cloaking326 and directional 
sound emitters327 have also been explored.

Virtual gain or loss through complex frequency excitations. The 
presence of gain or loss in a medium implies the respective temporal 
growth or decay of the waves propagating in it. These aspects are associ-
ated with zeros and/or poles of the scattering matrix that are located 
outside of the real axis in the complex frequency plane, making them not 
reachable with a monochromatic excitation with purely real frequency. 
The usual way to circumvent this problem amounts to engineering the 
physical gain and loss in the system to move these poles and zeros 
towards the real frequency axis328. Alternatively, one can directly access 
the complex poles and zeros by exponentially increasing or decreasing 
in time the amplitude of waves used to probe the system. This effectively 
makes the operating frequency complex329 and enables the excitation 
of scattering features beyond what is possible with a purely monochro-
matic signal on the real frequency axis. By doing so, it is possible to make 
passive systems effectively behave as if they had controllable gain or 
loss, without the inherent issues of stability and energy consumption 
associated with active protocols, which can make their practical realiza-
tion challenging. First introduced in photonics330–332, these concepts of 
virtual gain and loss have been applied to various non-Hermitian wave 
phenomena. For instance, virtual coherent absorption of elastodynamic 
waves has been achieved using counterpropagating signals exponen-
tially growing in time, with a growth rate matching the leakage of the 
resonant inclusion333,334. Besides this, a temporally decaying signal has 
been used to implement the transient version of the non-Hermitian 
skin effect335. If applied to lossy superlenses, this virtual gain permits 
the dissipation in the system to be effectively compensated, enabling 
the recovery of their full subwavelength imaging potential, which is 
limited by non-local constraints336 (Fig. 4d).

Amplification and nonlinearities. The presence of gain in a linear 
system eventually triggers nonlinearities that either stop growth or 
destroy the system. A typical example in wave physics is the appear-
ance of a limit cycle, where the system starts oscillating by itself. This 
can be illustrated using coupled-mode theory (Box 2) by the equation

̇ ≃ ∣ ∣ Oa ωa γa
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for a single complex mode a(t). The second term represents saturable 
gain with amplitude α, which can be Taylor-expanded at small |a| so we 
recognize the equation of a Stuart–Landau oscillator37: when α > γ, the 
state |a| = 0 becomes linearly unstable and a limit cycle describing 
spontaneous oscillations of the form a t α γ β( ) = ( − )/ e ωt φi + 0 appears. 
This is the basis of the operation of a laser. Indeed, phonon lasers, the 
mechanical equivalent of light lasers, have been proposed and realized 
in several platforms337–342. Limit cycles, which can occur because of the 
presence of gain and loss, spontaneously break time-reversal 

symmetry (in addition to time-translation invariance). This can be 
harnessed to produce non-reciprocal scattering responses with 
reduced losses343,344. For instance, a sonic circulator based on spinning 
aeroacoustic limit cycles was realized343 (Fig. 4e). An air flow orthogo-
nal to the whistle cavity provides some gain that drives the system into 
a limit cycle whose sustained radiation synchronizes with the incident 
wave to compensate for absorption losses. More generally, nonlinear 
phononic media can exhibit a variety of phenomena related to under-
lying broken energy conservation and the possible spontaneous break-
ing of time translation, ranging from nonlinear travelling waves such 
as shocks and solitons to chaotic attractors32,345,346.

Non-Hermitian skin effect. The non-Hermitian skin effect (NHSE) is 
a feature of certain non-Hermitian systems304,347–349, in which eigen-
values and eigenmodes are highly sensitive to boundary conditions. 
Physically, it leads to the directional amplification or attenuation of 
waves within the medium and to field accumulation on some specific 
boundaries. In its simplest realization, the NHSE can be illustrated by a 
1D chain of asymmetrically coupled resonators similar to the quantum 
Hatano–Nelson model347,349. In phononics, this can be captured by the 
coupled-mode equation

a ωa κ a κ a∂ = i[ + + ], (19)t n n n n+ +1 − −1

where integers n label the resonators, and where the amplitudes of 
the couplings t± to the left and to the right are different, mimicking a 
biased random walk. This effect has been related to the point gap topol-
ogy of the corresponding non-Hermitian Hamiltonian113. In phononic 
media, the NHSE has been investigated in the presence of asymmetric 
couplings350–355, odd elasticity356,357 and odd mass densities239. Some 
designs use electronic feedback loops between microphones and speak-
ers to obtain the NHSE for sound353, as shown in Fig. 4f, which shows 
the accumulation of the acoustic signal at a single boundary, whatever 
the source position. The NHSE can also be observed in waves reflected 
by lossless topological systems, where it can lead to non-reciprocal 
Goos–Hänchen shifts358.

Active continuum phononic media. As we discussed, the elastic tensor 
in equation (7) violates reciprocity when Cijkℓ ≠ Ckℓij. Similarly, energy 
conservation is violated whenever ℓ ℓC C≠ *ijk k ij  (ref. 237) (both con-
straints match when C is real valued). Such a situation, known as odd 
elasticity, can arise from the presence of non-conservative microscopic 
interactions45,250 and has been realized with active elements359,360, as in 
the example in Fig. 4g, showing a beam decorated with piezoelectric 
patches with designed feedback loops359. In such a metamaterial, qua-
sistatic cycles between the bending and shear modes are associated 
with a non-zero amount of work whose sign depends on the cycle 
directionality. Such cycles could have implications for energy harvest-
ing and sensing, and enable active wave propagation and instabilities 
within overdamped media45,356,361 as well as adaptive locomotion of 
active solid metamaterials360 (Fig. 4h). Conversely, the presence of 
these cycles means that it is impossible to have odd elasticity in a system 
where energy is conserved. Similarly, constraints on other material 
coefficients (such as ρij and Sijk) due to energy conservation237 can be 
broken in media where energy is not conserved222,239.

When Cijkℓ depends on frequency, it can also include a viscous 
part that dissipates energy, but can be passive. The combi
nation of the two leads to a viscoelastic medium20,30 in which 
C ω C ω η ω( ) = (0) + i (0) + ( )ijk ijk ijk

2Oℓ ℓ ℓ , where Cijkℓ(0) and ηijkℓ(0) are the 
(zero-frequency) elastic and viscous tensors.
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Generalized symmetries
In this section, we discuss several situations in which it is fruitful to 
consider the symmetries of multiple systems at once. We first discuss 
how the interface between two systems that have different symmetries 
(or different representations of the same symmetry) can host topo-
logical surface states. Then we discuss how generalizing symmetries 
to families of systems depending of parameters can allow us to identify 
additional hidden symmetries and to construct isospectral crystals. 
Next, we discuss how interpolating between different breakings of 
spatial-translation invariance can be used to enhance the control of 

the dispersion relation of phononic crystals. Finally, we discuss how 
in multilayer systems the symmetries of each layer can be harnessed 
to tailor wave propagation.

From symmetry to topology
Topological band theory is a framework that harnesses tools from 
topology to understand and control the behaviour of waves in materi-
als, including their interfacial response. Symmetry plays a key role in 
the design of topological phononic crystals. In a nutshell, edge states 
often occur when the symmetry of states on both sides of an interface 
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does not match. More precisely, consider a system depending on a 
parameter p so that a band crossing occurs where two irreducible sym-
metric representations cross each other at some critical value pc. At 
the interface between p < pc and p > pc, a band crossing is susceptible 
to occur to interpolate between the band structures on both sides. In 
such a system, there is a bandgap on both sides of the interface (when 
p ≠ pc), but the gap closes at the interface. The existence of such an 
edge state is to some extent unavoidable and related to the topology 
of the band structure. This example illustrates a general principle that 
has been formalized in group-theoretical terms under the name of 
topological quantum chemistry362,363, allowing a complete catalogue 
of topological phononic media to be obtained364.

The lifting of band degeneracies through symmetry breaking is a 
common starting point for creating bandgaps and topological bound-
ary modes. This is the case for Dirac cones in honeycomb lattices, singu-
larities protected by time-reversal and inversion symmetries. Breaking 
time-reversal symmetry yields a Chern topological insulator exhibiting 
non-reciprocal phononic propagation at the edge that is robust against 
spatial disorder214,215 (Fig. 5a). Breaking spatial-inversion symmetry 
while preserving time-reversal symmetry also opens a bandgap, lead-
ing to a valley-Hall insulator365. There, the edge modes between two 
mirrored lattices are only robust when a pseudo-spin associated to the 
two valleys is conserved. This emergent pseudo-spin can be harnessed 
to endow phononic waves with effective fermionic properties. This 
idea has been extensively investigated in phononics across multi-
ple platforms such as lattices of pillars with different radii366, which 
allow for pseudo-spins based on C6v symmetry and dipolar and quad-
rupolar modes, whose conservation enables wave sorting (Fig. 5b).  
A similar symmetry-based strategy has been proposed to self-assemble 
topological phononic metamaterials367.

Duality for phonons
The general definition of a symmetry, a transformation that leaves a 
system invariant, leaves room for other kinds of symmetries beyond the 

ones already discussed, which can be less straightforward, or somewhat 
hidden. As an example, two different configurations of a mass-spring 
chain (Fig. 5c) can share an identical band structure at the scale of the 
Brillouin zone, despite the absence of any conventional symmetrical 
relation between them. These ‘hidden symmetries’ may look accidental 
at first glance. To understand their nature, it is convenient to consider 
a family of systems continuously depending on a parameter p. For-
mally, to define a symmetry, the structure of the system needs to be 
encoded into a mathematical object such as the operator L introduced 
in the section on going beyond continuum theories, a Hamiltonian, or 
a dynamical matrix. Transformations are encoded into operators U,  
which are symmetries of L provided that ULU−1 = L. In this case, it is 
implicit that parameters are the same in L = L(p) on both sides of the 
equation. Dualities can be seen as symmetries that also change the 
parameter p associated with the system: given a function p ↦ u(p), we 
say that U is a duality when UL(p)U−1 = L(u(p)). At fixed points p* of u 
such that u(p*) = p*, known as self-dual points, the duality reduces to 
a conventional symmetry operation. The Onsager–Casimir reciprocal 
relations14 relating the properties of systems with opposite external 
biases (such as magnetic fields) are an example of such a duality. The 
mechanical structure known as a twisted kagome lattice368 provides an 
example with a more complex duality operator (Fig. 5d). In this case, 
the parameter p = θ is the twist angle, and H is the dynamical matrix of 
the phonons. The duality operator U shuffles the vibrational degrees 
of freedom in the unit cell, and u(p) = −p. Because of the duality within 
the family of twisted lattices, the band structures of dual systems are 
identical.

Other examples of mechanical systems dualities can be found 
elsewhere369–371, including a systematic way to construct them369. In addi-
tion, the abstract Maxwell duality between floppy modes and states of 
self-stress372–375 can also translate into a physical duality between paral-
lelogram tilings and fibre networks372. Beyond the iso-spectrality of dual 
media, duality operations put additional constraints on the self-dual 
configuration, similarly to conventional symmetries. More generally, 

Fig. 4 | Phononic phenomena induced by breaking energy conservation. 
a, A two-level non-Hermitian system made of two tightly coupled acoustic 
cavities with a coupling κ and controllable asymmetric loss Γ (top), which enables 
the demonstration of the coalescence of the two modes at the exceptional point 
(bottom, inset), evidenced by the merging of the two transmission peaks 
depending on the loss amount Γ. b, A unidirectionally invisible acoustic sensor at 
the design frequency f0 based on PT-symmetry, showcasing unitary transmission 
(S12 = S21 = 1). The sensor is reflectionless from one side (S11 = 0) but has strong 
reflection from the other side (S22, bottom, grey dashed line). Here, gain and loss 
are obtained with impedance circuit design through the use of different electrical 
loads ZL in the two speakers. c, In a disordered Hermitian acoustic system, part of 
the incident signal is reflected owing to spatial variations of the medium 
properties (bottom left, grey area), but a tailored gain–loss distribution permits 
to obtain perfect transmission through the sample, along with no pressure 
variations within the system (bottom right). This non-Hermitian design has been 
implemented discretely using electrodynamic loudspeakers with a controlled 
acoustic impedance (top). d, The resolution of a conventional acoustic superlens 
is limited by its non-locality, which makes kNL the largest accessible wavenumber, 
and by inherent dissipation, which pushes the corresponding unitary 
transmission T(kNL,ω*) = 1 below the real frequency axis (top). Using the 
associated complex excitation (ω ω ω* = * + i *R I ), whose imaginary part is related to 
the losses of the system, instead of the monochromatic signal (ω *R ), results in a 
virtual gain that effectively compensates the losses in the lens and leads to 
enhanced resolution (bottom). e, A three-port nonlinear acoustic cavity hosts a 

limit cycle that continuously radiates a signal (yellow) through the ports; this 
signal synchronizes with the incident harmonic wave (blue), gaining energy  
from the limit cycle’s emissions. In the presence of a bias, this enables loss-
compensated non-reciprocal transmission. f, Non-Hermitian skin effect in a 
chain of active acoustic resonators based on asymmetric couplings, which are 
implemented using active feedback loops between speakers and microphones 
(top). The plot shows the directional field accumulation towards the left side of 
the chain, whatever the source position (bottom). g, Odd properties of the elastic 
response of a mechanical beam induced by using electrically controlled 
piezoelectric patches. In such a medium with an odd micropolar modulus P 
describing the asymmetric coupling between bending and shearing of the  
beam, a quasistatic cycle between bending and shear motion of the unit cell is 
associated with a non-zero work per unit volume whose sign depends on the 
direction of the cycle. h, Odd elastic mechanical systems can harness their 
work-generating cycles to produce emergent active functionalities, as illustrated 
by this adaptive wheel that displays uphill locomotion on a granular bed. Its 
propulsion is driven by odd couplings between two of its shear modes S1 and S2, 
whose shear-space trajectory is a noisy limit cycle (inset). Panel a adapted from 
ref. 314, CC BY 4.0. Panel b adapted from ref. 324, Springer Nature Limited. Panel c 
adapted from ref. 325, Springer Nature Limited. Panel d adapted from ref. 336,  
CC BY 4.0. Panel e adapted from ref. 343, CC BY-NC-ND 4.0. Panel f adapted from 
ref. 352, CC BY 4.0. Panel g adapted from ref. 359, CC BY 4.0. Panel h adapted from 
ref. 360, Springer Nature Limited.
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wave dualities have consequences for macroscopic elastic properties46, 
and affect the propagation of waves at interfaces376 as well as topological 
edge and corner states377–379. They also lead to pseudo-spin degeneracies 
unusual in mechanics that can be exploited to perform information 
processing using non-Abelian geometric phases368.

Using families of symmetries to control phononic  
band structures
The crystallographic approach based on spatial symmetries is a power-
ful tool to engineer phononic crystals, but as the number of possible 
combinations of symmetries (space groups) is limited, this approach 
is not sufficient to finely control the shape of the bands. One way to 
circumvent this limitation is to use a parameter-dependent material 
to interpolate between different combinations of symmetries380,381. 
In particular, non-local metamaterials use couplings going beyond 

nearest-neighbours to control the propagation of waves380,382–384. Con-
sider a monoperiodic chain of meta-atoms with families of couplings 
corresponding to different spatial ranges380 (Fig. 5e). The systems with 
only blue couplings or only red couplings correspond to different 
discrete translation symmetries. While the periodicity of the system 
remains constant, the band curvature strongly depends on the ratio 
of the coupling strengths. This behaviour can also be seen as the result 
of the interaction of several chains of meta-atoms with different perio-
dicities, which allows for multiple mode scales at a fixed frequency 
in the first Brillouin zone. In particular, the selective promotion of 
the third-order inter-cell couplings generates a dispersion relation 
with a local minimum that mimics the physics of rotons in superfluids. 
This roton-like dispersion has been experimentally implemented in 
3D phononic metamaterials380,385–389 and enables the propagation of 
multiple travelling waves with different wavenumbers and opposite 
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directions at the same frequency in a homogeneous material, as well 
as zero group velocity modes at the two inflection points. A similar 
strategy has been used to design delocalized zero-energy modes with 
a frequency ω = 0 at a tunable wavevector q ≠ 0 by inducing non-trivial 
rigid motions within the medium using graph theoretical tools381. The 
hybridization of these modes with the waves propagating in the lat-
tice generates anomalous cones in the dispersion relation emerging 
from arbitrary locations in the Brillouin zone (Fig. 5f) and leading to 
broadband negative refraction.

Twistronics for phonons
In multilayer systems, it is possible to combine the spatial symmetries 
associated with each layer, for instance by exploiting interlayer rota-
tions. Recent works have started transposing the idea of twistronics390 
from electronic systems to phononics as an additional knob for wave 
control391. For example, the interplay between the spatial symmetries 
of the layers can generate superlattices controlled by the twist angle. 
The resulting moiré patterns, which have long-range periodicity at spe-
cific twist angles, are responsible for flat bands in the dispersion rela-
tion, which are tightly linked to field localization and strong resonant 
behaviour392–396. Moiré patterns can also emerge within a monolayer 
platform made of resonators whose positions are fixed but whose reso-
nant properties are spatially modulated and rotated to introduce a 
structural mismatch with the underlying resonant lattice. Such twisted 
spatial modulations of a unique layer yield tunable wave behaviour, 
as demonstrated in hyperbolic phononic metasurfaces160. Beyond 
strictly periodic moiré patterns, twist-driven topological effects397,398 
and tunable gauge fields for negative refraction399 relying on structural 
features (Fig. 5g) have been demonstrated over large angular ranges.

Beyond twist-induced lattice effects, interlayer rotations are rel-
evant for anisotropic media, as showcased by twisted hyperbolic meta-
surfaces, where monolayers with hyperbolic dispersion are coupled 
and rotated with respect to each other400–402. By controlling the twist 
angle, the bilayer undergoes a topological transition between open and 
closed frequency contours for a broad range of frequencies, enabling 
broadband tunability of the directionality and localization of the wave 

propagation. In particular, the transition angle corresponds to a canali-
zation regime with enhanced wave-matter interaction. Twist effects can 
also be used to rotate or shear dispersion relations in so-called twisted 
shear hyperbolic metasurfaces403. The corresponding orthogonality 
breaking between two detuned directional resonances makes it possible 
to control both the Hermitian and non-Hermitian features of the wave 
propagation. For a fixed twist angle, the principal axis of the hyperbolic 
medium rotates with frequency, and the spatial distribution of loss 
does not match the contour’s symmetry. At the operating frequency, 
this translates into an effective material tensor τ, whose Hermitian part 
is diagonal while its non-Hermitian part presents some off-diagonal 
terms (Fig. 5h). Using the twist between two detuned hyperbolic meta-
surfaces, this effect can be maximized, and directly results in a screwed 
hyperbolic field profile where some branches are overdamped and oth-
ers enhanced in comparison to a conventional hyperbolic medium. The 
combination of additional rotation-symmetry breakings within multi-
layer phononic media yields even more advanced wave manipulation404, 
such as all-angle directional canalization of sound405.

Outlook
As showcased throughout this Review, a symmetry-driven approach is a 
successful paradigm for the advanced manipulation of phononic fields 
across a wide range of domains and scales. In systems where energy 
conservation is broken, a frontier consists in engineering active and 
time-dependent media with feedback, in which wave propagation can 
be controlled at will through feedback loops. The future development of 
multiphysics concepts such as electromomentum or magnetomomen-
tum couplings has great potential to push the levels of reconfigurability 
of phononic media beyond what is currently possible. In particular, the 
ability to implement extremely fast modulations of the global proper-
ties of the medium over a large scale would allow the investigation of 
out-of-equilibrium physical phenomena406 and the use of time as an 
extra tuning parameter in the context of 4D metamaterials407. Recon-
figurable acoustic metasurfaces paired with optimization protocols 
have also proven to be a crucial tool for wavefield shaping, allow-
ing advanced multiplexing of acoustic communication in complex 

Fig. 5 | Generalized symmetries within families of phononic media. 
a, Flow-induced time-reversal symmetry breaking in an hexagonal acoustic lattice 
lifts the Dirac cone degeneracy and opens a topological bandgap described by a  
Chern invariant when the air velocity vair in the lattice is non-zero. Such a phononic  
Chern insulator exhibits topologically protected non-reciprocal wave propagation  
at is boundaries. b, The preservation of C6v spatial symmetry within triangular 
lattices of pillars, as well as the symmetrical band inversion induced by changing 
the radius of the pillars (left), results in helicoidal topological boundary states 
whose symmetry-engineered pseudo-spin (red indicates spin + and blue spin −) 
allows for wave sorting at topological crossings (right). The image on the left is a 
picture of the system, the one on the right is a simulation of the acoustic pressure 
field distribution. c, Three different configurations of a mass–spring chain show 
the emergence of a hidden symmetry, or duality, that results in two different 
lattices having the same band structure (left and right). At the self-dual point 
(centre), the duality becomes a symmetry of the medium and leads to a double 
degeneracy of the band for the entire Brillouin zone. d, In the plane, a twisted 
kagome lattice hosts a duality transformation U that rotates the displacements 
of the three masses (red, blue and yellow arrows in the schematic at the top) and 
translates them to different unit cells. This transformation is a combination 
of spatial and non-spatial transformations that goes beyond space group or 
internal symmetries. This non-trivial duality relates different twisted kagome 
lattices configurations (top left and right lattices), which can be implemented 

using Lego bricks (bottom picture) e, Changes in the dispersion relation for a 1D 
chain of masses and springs as a function of the ratio between first-order (K1) and 
third-order couplings (K3). For a ratio equal to 1, the dispersion is analogous to 
that of a roton. f, Zero-energy deformation mode within a non-locally resonant 
phononic metamaterial, which yields anomalous cones in the band structure 
emerging from zero frequency at the point K of the Brillouin zone, in contrast 
with the typical case of cones starting at the Γ point. g, A twist angle between 
two phononic crystal layers (left) induces negative refraction of acoustic waves 
(top right), described by a shift of the isofrequency contour in reciprocal space, 
which can be modelled by a spatially dependent gauge field A (bottom right). 
h, A twist angle between two detuned anisotropic elastic metasurfaces yields a 
hyperbolic effective material tensor τ with non-Hermitian off-diagonal terms S 
(left). This leads to a frequency-dependent hyperbolic contour orientation of the 
bilayer (top right). This axial dispersion comes with an asymmetric distribution 
of losses, which results in shear hyperbolic wavefronts of the out-of-plane 
displacement u_z stemming from a point-source excitation, as shown in both 
reciprocal (Fourier transform (FT)) and real space (bottom right). Panel a adapted 
from ref. 214, CC BY 4.0. Panel b adapted from ref. 366, Springer Nature Limited. 
Panel c adapted from ref. 369, CC BY 4.0. Panel d adapted from ref. 368, Springer 
Nature Limited. Panel e adapted from ref. 380, CC BY 4.0. Panel f adapted with 
permission from ref. 381, American Physical Society. Panel g adapted with 
permission from ref. 399, AAAS. Panel h adapted from ref. 403, CC BY 4.0.
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environments408. Alternatively, the use of active matter112,409 or flex-
ible soft elastomers300–302 to modify the properties of the propagat-
ing medium opens the door to complex dynamic wave phenomena 
with analogies with the behaviour of active solids ranging from bio-
logical tissues to soft robotic materials112,250,360,409–413. Focusing on the 
zero-frequency response of the medium31,414, active components open 
avenues for autonomous metamaterial-based machines relevant for 
sensing, shape-morphing and object manipulation. Conversely, the use 
of activity often requires taking into account instabilities and nonlin-
earities, which can be used to create new functionalities. In this context, 
new ideas and implementations linked to non-Abelian, non-Hermitian 
and nonlinear topological phenomena, as well as topological defects 
and disordered topological phases, have emerged as a means to control 
acoustic and optical fields415–417. These directions hold promise for 
next-generation computation and telecommunications applications 
built on topologically robust devices.

The symmetry-driven approach described in this Review goes 
beyond artificial media and also applies to natural materials. In the 
near-infrared optical frequencies, the vibrations of atomic lattices 
(phonons) can interact with light to create quasiparticles called 
phonon-polaritons, whose symmetry-related properties, such as 
hyperbolicity, are currently under extensive study418. Controlling the 
propagation of these hybrid surface waves, either via twisted multilayer 
systems or artificial patterning, is at the heart of modern nanophoton-
ics, and future investigations combining both spatial and time symme-
tries, such as Floquet polaritonics, are promising research directions. 
Beyond phonon-polaritons, it has been recently demonstrated that 
phonons in natural alpha-quartz show intrinsic chirality419. Phonons 
are also related to heat transport420, and the symmetry-based approach 
also applies to this diffusive regime, as showcased by thermal systems 
with anti-parity–time symmetry308 and twisted thermal metasurfaces421.

Going beyond standard symmetries, the examples of general-
ized symmetries we discussed, such as twist symmetries or dualities, 
show that the symmetry-based approach discussed in this Review 
is open-ended, as new kinds of symmetries can emerge. Finally, 
symmetry-based approaches can complement the inverse design 
methods and machine-learning techniques that have been developed 
in the past decade to design artificial metastructures422–427, for instance 
in equivariant machine-learning techniques428.
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