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Phonons are quasiparticles associated with mechanical vibrationsin Introduction

materials. They are at the root of the propagation of sound and elastic Symmetry-driven phononics
waves, as well as of thermal phenomena, which are pervasive in our ina nutshell

everyday life and in many technologies. The fundamental understanding | Breaking spatial symmetries
and control of phonon responses in natural and artificial media are Breaking non-spatial

key inthe context of communications, isolation, energy harvesting symmetries

and control, sensing and imaging. It has recently beenrealized Generalized symmetries
that controlling different symmetry classes at the microscopic and Outlook

mesoscopic scales in synthetic media offers a powerful tool to precisely
tailor phononic responses for advanced acoustic and elastodynamic
wave control. In this Review, we survey the recent progress in the design
and synthesis of artificial phononic media, namely phononic crystals
and metamaterials, guided by symmetry principles. Starting from
tailored broken spatial symmetries, we discuss their interplay with time
symmetries for non-reciprocal and non-conservative phenomena. We
also address broader concepts that combine multiple symmetry classes
toinduce exotic phononic wave transport. We conclude with an outlook
onfuture research directions based on symmetry engineering for the
advanced control of phononic waves.
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Introduction

Asoutlined by Pierre Curie in the late nineteenth century’, symmetries
play a fundamental role in the physical understanding of various
natural phenomena, especially in the context of wave behaviour. As
aconsequence, physicists and engineers have been hunting for the
presence or absence of symmetries in systems not only to under-
stand, but also to tailor their physical properties. In this Review, we
provide a unified perspective on the latest research on the propa-
gation of mechanical waves in mesostructured materials, such as
phononiccrystals and metamaterials, under the paradigm of symme-
triesand symmetry breaking. Recent reviews of acoustic and elastic
metamaterials and metasurfaces®® feature exciting advancesin the
control of mechanical wave propagation through structured media.
Here, we aim at articulating this progress across different classes of
symmetry engineering, showing how this approach can provide a
powerful perspective to understand, design and optimize phononic
metastructures.

Overall, the concept of symmetry is very general: it includes any
transformation that keeps an object unchanged. Thisis the case for the
familiar spatial symmetries, which we discuss after introducing some
basic phononics concepts. We then expand to abstract symmetries
connected to the temporal evolution of a system, including reciproc-
ity, time-reversal, time-translation invariance and energy conserva-
tion. Finally, we discuss generalized symmetries involving families of
systems such as dualities and twist symmetries (Fig. 1).

Symmetry-driven phononics in a nutshell
Mechanical waves and how they propagate

In this Review, we focus on elastic waves (mechanical waves in solids)
and acoustic waves (mechanical waves in fluids and gases). Possibly the
simplest description of mechanical waves is from the perspective of
continuum theories’ . For instance, acoustic waves in a simple fluid
can be captured by the acoustic wave equation

Bdip=p,'Vp, 60

where p(t,r) is the pressure, p, the density of the unperturbed fluid
and Bitsisentropic compressibility (the inverse of the isentropic bulk
modulus B = 7). This equation can be obtained by linearizing the
Navier-Stokes equations along with anisentropic equation of state”".

Similarly, continuum elasticity describes the propagation of elas-
tic waves in an ideal, uniform and isotropic solid by the equation of

motion'®?

pafu:uV2u+(B+§jV(V~u), )

in which p is the mass density of the solid, u(t,r) the displacement
field that measures the motion of the solid with respect to areference
configuration, and g and Bare the shear and bulk moduli, respectively.
Both equations (1) and (2) can be traced to conservation laws that
arise from symmetry: the conservation of mass 0,0 + pv - v=0 and
the conservation of linear momentumopu =V - ¢ +f, in whichp=pv
is the density of linear momentum, v = d,u the velocity field, o the
stress tensor, and fthe density of body forces applied externally (set
tozero here). Acoustic waves are longitudinal, whereas elastic waves
include both longitudinal compression waves and transverse shear
waves. Bothacoustic and elastic waves have a polarization (the direc-
tion of the oscillating velocity or displacement field, respectively),
which canbe, inthe case of plane waves, related to their longitudinal
or transverse nature®.

Equations (1) and (2) may not be sufficient to describe wave
propagation. This can happen when the material does not satisfy
the required symmetries, if there are other degrees of freedom in
the system, if the system exhibits nonlinearities or if a continuum
theory is not appropriate given the size of material heterogeneities
of the medium when compared with the wavelength. Several of these
conditions may apply at the same time, especially in the context of
engineered materials.

Materials with lower symmetries

When mechanical waves propagate in materials with lower symmetries,
the propagation equations typically acquire additional terms account-
ing for new couplings between degrees of freedom that arise when the
symmetry of the system is reduced. It can happen that the equations
keep roughly the same form but are more complicated. For instance,
amore general version of equation (2) that does not assume isotropy
reads (neglecting body forces)

PO =0)[CypDpty], (3)

inwhich u;is the ith Cartesian component ofu,and 0, = d/0r;are partial
derivatives with respect to space. Here, Cy, is the elasticity tensor,
whichrelates the stress g;to the displacement gradients d,u, through
0;= Cy0,u,. Compared with equation (2), more terms are present, but
they are roughly of the same type (a second-order derivative with
respect to space). Any remaining symmetry is encoded in Cy,. For
instance, spatial symmetries represented by matrices U € O(d) con-
strain theelastic tensor through Gy, = Ry R;; Ry Rgp Cirjr rpr Where Ry,
are rotation matrices.

It is also possible for terms to appear. As an example, consider
sound waves propagating in a moving fluid flowing along the x axis.
Inthe laboratory frame, these can be described by the equation

Bdip=py'V2p - 2Bued,d.p - Buddrp. )

in which v, is the velocity of the unperturbed fluid in the laboratory
frame. The term with mixed time and space derivatives 0,0,p associated
with transportis known as a Willis coupling term when viewed through
the lens of dynamic homogenization™. As we shall see in the sections
onbreakinginversion symmetry and on breaking reciprocity, this term
results from the violation of both inversion symmetry and time-
reversalinvariance in the system. The aip termis the consequence of
the anisotropy of the system; contrary to the Willis coupling, it could
arise in amirror-symmetric system.

Additional degrees of freedom in the medium

The continuum description of equations (1) and (2) focuses on the
displacement field u(¢,r). However, this may not be enough to encode
all the relevant degrees of freedom in the system. As an example,
mechanical degrees of freedom can be coupled with heat transport
(in thermoelasticity) or with electromagnetism (in piezoelectricity
and electrostriction®). Typically, the key feature of a piezoelectric
crystal is the conversion of mechanical energy into electricity and
back. As such, the electromagnetic field has to be included in the
description of phononic materials when piezoelectric phenomena
emerge. This exampleillustrates the interplay between symmetries
andrelevant degrees of freedom: inversion symmetry of bound charge
distribution within the medium must be broken for piezoelectricity
to occur and induce strain-dependent electric dipoles. When this is
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Fig.1|Symmetry-driven artificial phononic media.
Schematics of the various symmetries characterizing
phononic materials and metastructures, at both the
microscopic and macroscopic scales. Breaking these
symmetries enables enhanced control over acoustic
and elastodynamic wave propagation. Symmetry
classesinclude spatial and non-spatial symmetries,
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not the case, the mechanical and electrical degrees of freedom are
decoupled and can be treated independently. Similarly, one must
consider magnetoelastic effects in naturally occurring magnetic
materials'® and magnetoelastic metamaterials” via magnetic order
parameters’®", In the same vein, the polarization of acoustic waves
requires consideration of the acoustic velocity field, not only of the
scalar pressure field.

Besides this, additional mechanical degrees of freedom not cap-
tured by the instantaneous displacement field can play a role. In the
simplestsituations, these features can be captured by viscoelastic* or
elastoplastic”* models in which the deformation history affects the
evolution of the deformationin arate-dependent way, so the history of
the displacement gradient Vu(t,r) must be included in the constitutive
models. Alternatively, some aspects of microstructural deformation
asymmetries may be retained in the constitutive description, as for
micromorphic elasticity?’, of which micropolar (Cosserat) elasticity
theories, which include microscale rotations and couple stresses, are
a special case” %, These can be necessary to describe metamaterials
where complex unit cellslead to internal motions (known as non-affine
deformations) that may deviate considerably from the (macroscopic)
average. For instance, consider a half-filled bottle of water. If the bot-
tle is not transparent, we cannot track the motion of the water, so the
relationship between the total linear momentum and any directly
observable displacement becomes non-trivial®.

Whenthe systemislinear, several simplifications arise. In particu-
lar, we can performaFourier transforminspace and time, which allows
us to hide degrees of freedom at the price of having complex-valued

‘non-local’ material coefficients that depend on the wavevector q
and the frequency w and therefore represent a convolution in space
and time. The convolution in time, in particular, represents a form
of time-translation-invariant memory in the system. For instance,
equation (3) becomes

pw’ul(q, ©) = Cy,(q, ©)qq,u(q, w). ®)

The case of equation (3) would correspond to a constant Cy, not
depending onthe wavevector q and the frequency w. Infact, the mate-
rial coefficients Cy,(w) of conventional materials such as steel or air
display aweak dependency on frequency owing to microscale behav-
iour such as molecular relaxation processes and internal friction***,
Fromthe perspective of rheology, this means that all materials have a
viscous response in addition to an elastic response. In principle, this
Fourier transform procedure allows us to eliminate many degrees of
freedom, but keep inmind that we stillneed to keep track of the degrees
of freedom we care about because we can experimentally manipulate or
measure them, like the electricfield in piezoelectricity. Equation (5) is
deceptively simple:if we Fourier transformback to real time, the prod-
uct of Fourier transforms becomes a convolution of the instantaneous
strain and the relaxation function of the material®®, which makes the
presence of memory explicitin the system. When the systemis nonlin-
ear, these simplifications do not hold, and a case-by-case approach s
required. However, symmetries still constrain the possible nonlinear
termsinthe equationsand can be harnessed to control the behaviour
of the system®"*2,
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Beyond continuum theories

Insomessituations, it may be necessary to describe the materialasa col-
lection of discrete units coupled to each other (forinstance, a collection
of masses connected by springs). This is the case, for instance, when
an artificial material is physically constructed out of weakly coupled
individual units such as resonators, whose size is not negligible when
compared with the typical scale of spatial variations of the phononic
wave propagating in the system. In some situations, a continuum
description may also be insufficient even if we include many degrees
of freedom®*,

In the context of wave propagation, the most common way of
describing an assembly of coupled resonators or modes is tempo-
ral coupled-mode theory***, whereby the evolution of the complex
amplitude a,(¢) of the resonant mode nis described by

atam = Z Lppay, (6)
n

where the matrix (or operator) £ with components L, represents the
coupling between different modes (the operator H = il is often called
a Hamiltonian by formal analogy with quantum mechanics). In this
case, the symmetry of the system arises from the interplay between
the symmetry of the modes and of the geometry of their couplings,
andis encoded in operators acting in the same space as L. Analogously
to atomic orbitals, as shown in Fig. 1, meta-atom modes can be scalar,
vectorial (in which case a, are the components of the modes) and so
on. They canbe further organized into a metamaterial with acrystalline
structure, allowing one to design its symmetries on demand. In this
coupled-mode theory, transformations of the degrees of freedom (that
may or may not be symmetries) are encoded in invertible operators U
actingin the same space as . The transformation U is asymmetry when
it commutes with £, thatis, when UL =L U.

Getting a continuum theory from a mesoscopic description
The techniques to derive acontinuum theory froma collective descrip-
tion of the individual elements of the material are known as coarse
graining, averaging or homogenization®. In metamaterials described
by linear equations of motion, homogenization canbe achieved at the
price of having frequency-dependent and momentum-dependent coef-
ficients, which introduce non-localities into the homogenized descrip-
tion of the material. In the general case, however, approximations are
required toremove irrelevant degrees of freedom by exploiting a sepa-
ration of timescales using methods such as adiabatic elimination of
averaging®®, Forinstance, spatially periodic media, which are invariant
under discrete spatial translations, can be treated using Bloch theory,
whereas random media, which are on average translationinvariant, can
bedescribed using disorder-averaging techniques. Correspondingly,
the relation of the continuum fields to the microscopic degrees of
freedom (which canbe appropriately chosen combinations or disorder
averages and so on) may change even though their physical meaning
should always be the same. We refer to refs. 39-41 for more details
including techniques and methods; torefs. 42-44 for interacting point
particles; to refs. 45-47 for cases with less symmetry; to refs. 48-51
for Bloch-Floquet techniques for spatially periodic media; and to
refs. 29,52,53 for ensemble average methods for disordered media.

Elastic solids: a case study

We now consider a generalization of equation (2) that describes the
propagation of elastic waves in solids known as Willis materials*¢, and
that will serve as a case study throughout the Review.

The equation of motion of elastic waves in a solid takes the form
O, = 0;0,+ £, 7

in which y;is the density of linear momentum, g; the stress tensor,
and f;the density of external body forces. In addition, we consider the
constitutive relations

(OJ_CSVU inind tati
15 plou orinindex notation

Oij = C,-jkfafuk + S,-jk(')tuk

n= gikfat‘uk + p,jatu_/

(8)

according to which the momentum density y;and the stress g are pro-
portional to both the time and space derivatives of some displacement
fieldu(¢,r), which may or may not be the displacement of the centre of
mass. Thisisin stark contrast with the behaviour of conventional solids
discussed in the introduction, for which these constitutive relations
are uncoupled.

Inthe constitutive relations in equation (7), the mass density p is
no longer a scalar field, but a rank-two tensor that arises because the
displacement field may not coincide with the displacement of the
centre of mass, Cis arank-four elastic tensor, and the third-order ten-
sorsSand S, known as Willis couplings*>*>*, can be seen as the phon-
onicanalogue of bi-anisotropic tensorsin electromagnetism®~’, whose
local versionis rooted in spatial asymmetry. As discussed in the intro-
duction, the quantitiesin equation (7) may be effective quantities that
have to be properly defined on a case-by-case basis. In addition, all
quantities in equation (7) may depend on the frequency w and the
wavevector q (for example, 0; is 0;(w,q)), making them non-local in
space and time: the products in equation (7) represent a convolution
inspaceandtime. Inthis case, the material coefficients like C;,may be
complex valued to encode phase lags between stress and strain at a
material point. Typically, Willis coupling coefficients are connected to
aweak form of non-locality®>** because the dynamic effective response
ofthe medium depends onboththelocal response of the material point
and its interaction with neighbouring heterogeneities, described by
the gradients of the phononicfields. In the following, we define ‘local’
materials as those that are adequately described by linear response
coefficients that do not depend on q (that is, in the q - O limit). This
generally occurs if the microstructure of the medium is sufficiently
small relative to the wavelength, leading the constitutive response at
any material point to depend only on the fields at that point.

Breaking spatial symmetries

A bulk material, viewed from the continuum perspective, is invariant
under all spatial translations, rotations and inversions. These are col-
lectively known asisometries and form the Euclidean group B¢ (where
disthe dimension of space). These symmetries underpin constraints
and conservation laws. For instance, translation and rotation sym-
metries lead to linear and angular momentum conservation, respec-
tively®®, and point-group symmetries guarantee that quantities with
different symmetries are decoupled®®'. This makes their selective
breakingan efficient tool to engineer wave propagation within artificial
media, which s the focus of this section.

Breaking translation symmetry
Inhomogeneitiesinamedium, such asaspatial interface between two
materials, break spatial translation symmetries. In such a system, the

Nature Reviews Materials


http://www.nature.com/natrevmats

Review article

conservation of the physical momentum p that underlies the wave
equations still holds, because it is related to the joint translation of
the medium and the wave through Noether’s theorem. In contrast, the
translation of the waves alone is notasymmetry because the medium s
inhomogeneous. As a consequence, another quantity called the wave
momentumis no longer conserved® **. Intuitively, this can be seen from
thefactthatataninterface, therefracted andreflected waves carry dif-
ferent wavevectors from the incident field. The spatial repetitions of
suchinterfaces canresultinband foldings or more complex structures,
andscattering at single interfaces can be designed to manipulate waves
inboththe near and farfields. These aspects are the focus of this section.

Phononic crystals. In a phononic crystal?, continuous translation
invariance is broken, but the system remains invariant under a set of
discrete translations collected in agroup called a Bravais lattice®. This
breaking of continuous translation invariance also partially breaks
rotation and reflection symmetries: the remaining symmetries are
captured in mathematical objects called space groups**~®'. For instance,
one could consider a version of equation (3) in which the elasticity
tensor C(r) and the density p(r) depend on the position rin a spatially
periodicfashion, suchas p(r) = p(r + aé) inwhich aéis a vector defining
the discrete periodicity of the phononic crystal.

Toanalyse suchasystem, we use Bloch-Floquet theory***.Ina
nutshell, the spatial periodicity r > r + aéimplies that the plane waves
e'“"and '@ ®* where G - aé =21n, n € Z, areindistinguishable, and so
one candefinethe wavevector gonareduced region called aBrillouin
zone that has periodic boundary conditions. The wavevector space is
therefore tiled with copies of a ‘first’ Brillouin zone centred around
q =0.Theresulting wave propagationis captured by aband structure,
consisting of aset of dispersion relations w,(q) (and the corresponding
vibrational modes) that are repeated periodically in the wavevector
spaceoutside the first Brillouin zone (the decomposition of vibrational
modes on the different equivalent Brillouin zones describes how fast
they spatially oscillate in various directions, which gives information
onthebehaviour ofthe systemwhen aninterface or adefectis present).
This description encompasses and goes beyond the metamaterial
picture, inwhich an effective continuum theory with modified material
constants is used to describe the behaviour of the system probed at
long wavelengths>*", It can perturbatively be seen as the result of
folding the dispersion relation of waves in a homogeneous medium
into the first Brillouin zone, which canbe further harnessed to control
wave propagation by considering families of symmetries, as discussed
inthe section on generalized symmetries.

One of the key features of phononic crystals is that they can have
bandgaps, that is, frequency bands where no wave propagation can
occur. Mathematically, this can be understood using the ‘transfer
matrix’ T(w, E, p), which describes the propagation of waves with fre-
quency walongagivendirection throughafinite region by relating the
wave amplitudes on the left to those on the right®*”". For instance, the
transfer matrix corresponding to the 1D version pd;u=09,0 with
o=Eduisgivenby’>”

u u, 1.
[ Rj - T[ L) with T=( cosﬁ Z sin 8), )
Or oL -Zsind cosd
in which L and R mean left and right, and where Z= pc’k is the imped-
ance of the medium of dispersion relation w = ck with ¢ = E/p,and 9 = kh.

In alossless medium, the eigenvalues of the transfer matrix are, in
general, of the form e*'%8, and the dispersion relation of the bands is

givenby tr [T(w)]= 2c0s@y, in which g is the (dimensionless) Bloch
wavenumber, which is real valued for propagating (Bloch) states and
purely imaginary for non-propagating states. (When uand chave more
than a single component, T is a larger matrix and these expressions
have to be adjusted accordingly.) For the particular T in equation (9),
we find that g;(w) = 9 = w/ch, so we recover the bulk dispersionrelation.
Consider now a phononic crystal obtained by alternating two media
with differentimpedances Z , = Z(1 + €), corresponding to a stepwise
variation of £(r) and/or p(r). The transfer matrix corresponding to the
unitcellis T,.= T,T, (T;is obtained from Tin equation (9) by replacing Z
withZ). As tr [T, (w)]/2 = [e%- cos(29)]/(e2- 1), theinequality| tr T| < 2
does not always hold. When it does not, the Bloch wavenumber g is
not real valued: the corresponding frequencies w correspond to the
bandgap in which waves cannot propagate. The critical frequencies w*
at which solutions change from propagating (in the bands) to
non-propagating (inthe gap) are called band edges and correspond to
exceptional points of the transfer matrix™ ",

As a consequence, exceptional points can arise in the complex
wavevector space even in passive lossless media. It is also possible to
design them by exploiting the coexistence of multiple wave polariza-
tionsin planar elastodynamics. For instance, in elastic laminates with
isotropic constituents, the polarization conversion between shear
and dilatation waves can induce exceptional points even away from
the edges of the Brillouin zone’®”’. These conservative laminates can
give rise to anomalous wave phenomenasuch as negative refraction”
and beam steering’®”°. By including an anisotropic component, it is
also possible to break the symmetry of leftward and rightward waves
and excite axially frozen modes with a finite transmittance despite a
vanishing axial group velocity®’.

Going back to dispersion relations, it turns out that all the band
structures of 1D layered systems are encapsulated in a compact uni-
versal manifold (Fig. 2a for the two-layer case discussed above), which
depends only on the impedance mismatches (not on the volume frac-
tion of the constituents nor on their specific physical properties)
and from which it is possible to calculate the density of the gaps in
the spectrum®-*2, In Fig. 2a, the yellow part of the torus corresponds
to gaps, its boundary to the band edges, and the band structure is
constructed by wrappingaline (blue) around the torus.

Theband folding approach canalso be used at the subwavelength
scaleinthe presence of locally resonant elements with astrong albedo
close to resonance, as demonstrated by the structure-induced nega-
tive refraction of sound in crystalline metamaterials made of soda
cans®®* (Fig.2b).In parallel, the existence and size of bandgaps are also
constrained by the symmetry of the system®>*°, Overall, the domain of
phononic crystalsled tothe development of various advanced mechan-
ical properties including bandgaps for strong field confinement®,
waveguiding® and focusing®. Bandgaps have also been observed in
internal gravity waves, a class of mechanical waves presentin stratified
fluids such as the oceans. Besides, phononic crystals play a major
role in the control of elastic polarizations, ranging from bandgaps
with elastic polarization selectivity” to multiphysics interactions in
cavity optomechanics where strong interactions between photons
and phonons can be obtained in phoxonic structures acting as dual
photonic-phononic crystals®*.

Broken translation invariance beyond phononic crystals. Phononic
crystals (with their discrete translationinvariance) are not the only way
to produce structures that break translation symmetry while remain-
ing uniform bulk materialsin some sense. For instance, quasiperiodic,
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amorphous, hyperuniform or disordered systems can be seen as gen-
eralizations of phononic crystals. In these systems, slightly different
approaches are required. Disordered and aperiodic systems cannot
be handled using Bloch theory, as there is no translation invariance.
However, these systems still have some regularity, which can be han-
dled using non-commutative geometry, in which the Fourier space
is replaced by a mathematical object called a C*-algebra® . This has
been applied to phononic topological states® discussed in the next
subsection. Quasicrystalline phononic structures, which can be seen
as projections of higher-dimensional periodic structures inwhich the

h Anisotropic acoustic media

i Acoustic angular momenta

usual symmetry-based approach can be used, have also been exten-
sively studied® for their bandgap properties'°’, waveguiding'*'*?,
broadband asymmetric transmission'®?, topological pumping
and fractal rainbow trapping'*® (Fig. 2c). In all these systems, non-local
couplings can become important and affect wave propagation.

104,105

Engineering interfaces. The boundary of a medium is the most
extreme case of spatial translation symmetry breaking. It is also an
essential part in defining wave-matter interactions: the boundary
permits interactions with the bulk. To engineer phononic devices,
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Fig.2|Phononic phenomenainduced by breaking spatial symmetries.

a, Universal torus (obtained by connecting the opposite edges of asquare, see
inset) onto which all infinite band diagrams of 1D phononic crystals are mapped
(main panel). The frequency w acts as a time-like parameter defining a linear flow
onthetorus: { (@) =w(hy/c;, hy/c;)modm=:({?,7?),such that different
crystals are mapped to flows of different slopes {?/¢; the gap region (yellow) is
universal for crystals with the same impedance mismatch. b, Subwavelength-
scaled crystal made of hollow soda cans for negative refraction and superlensing
of acoustic surface waves (the dashed red lines show the corresponding ray
tracing). ¢, Quasicrystalline phononic lattice (1) stemming from an effective
projection onto a quadratic curve (P(A)) thatis graded along its length, leading to
fractal rainbow trapping. d, Correspondence between a conventional resonant
cavity of length L. made of two mirrors with reflection phases ¢, ; and described
by ascattering matrix S(w) (left) and a virtual cavity at the edge of agapped
phononic crystal, whose reflection phase ¢z(w) depends on the operating
frequency, hosting aboundary mode. e, Multiphysics couplings in a tri-anisotropic
medium: Willis coupling, piezoelectricity and electromomentum coupling.
Thelocal part of these interactions stems from different symmetry breakings

at the subwavelength scale (Box 1). f, The application of a constant force F,,
equivalent to the total momentum along the z axis, P,, on an asymmetrically
structured beam results in strain 0,u,, demonstrating non-zero Willis coupling

for flexural waves (top). Schematic of an asymmetric scatterer responsible for
airborne acoustic Willis coupling (bottom). g, Magnitude of the measured
acoustic polarizability components within an asymmetric Helmholtz resonator
(inset), normalized by the theoretical bound 4w This shows maximal
off-diagonal polarizabilities (a,, and a,, where p and v are the local pressure and
velocity, respectively), which are scattering versions of acoustic Willis coupling,
matching the conventional monopole and dipole polarizability. h, General model
of anacoustic medium whose macroscopic effective response yields adynamic
mass density tensor (left). Acoustic metamaterial with membranes along one
spatial direction, leading to hyperbolic wavefront propagation (right).i, An
acoustic Bessel beam with a rotating phase profile in reciprocal space (top) is
responsible for a vortex beamin real space (bottom) whose spiralling canonical
momentum density p results in anon-zero integral orbital angular momentum
(Lauw)- Thelocal velocity polarization yields an additional spin angular momentum
density S,y. Panel b adapted from ref. 84, CC BY 4.0. Panel cadapted with
permission fromref. 106, American Physical Society. Panel e adapted with
permission from ref. 138, Elsevier. Panel f (top) adapted fromref. 122, CC BY 4.0.
Panel f (bottom) adapted fromref.129, CCBY 4.0. Panel g adapted fromref. 123,
Springer Nature Limited. Panel h (right) adapted with permission from ref. 153,
American Physical Society. Panel i adapted with permission fromref. 162,
American Physical Society.

we can either try to performimpedance matching to minimize therole
ofinterfaces, orembrace themas an engineering knob. As an example,
metasurfaces are 2D metamaterials that enable both control of surface
waves inthe near field and beam shaping in the far field through control
of the structure and symmetries of the surface’.

Another approach consistsin harnessing boundary states that can
existat the interface between amedium and air, or between two media.
The existence of such interface states can be captured fromascattering
perspective®®”, adescriptionrelated to the transfer matrix approach
mentioned above. When two good mirrors are placed face to face, they
formaresonant cavity, where standing waves can be maintained until
they are damped by losses, and whose resonant interaction with the
environment is described by a scattering matrix S(w) (Fig. 2d, left).
These resonant modes are obtained by requiring that a round trip in
the cavity leavesawavein phase withitself. In other words, the dephas-
ing A¢ picked during the round-trip should be a multiple of 2m. For a
cavity of size L., A = 2k(w)L. + ¢, + ¢z, where k(w) is the dispersion
relation of the medium in the cavity, and ¢, ; the reflection phases on
the left/right sides. Now, let us consider a cavity where the walls are
replaced with a phononic crystal. For frequencies w in abandgap, the
phononic crystal acts as a frequency-dependent mirror with reflec-
tion phases ¢, x(w) arising from the multiple interferences on the
Bragg planes of the crystal. The solutions w* of A¢(w) = 0 [mod 2] in
thelimit where L. = 0 correspond to edge states (also known as Tamm
states'”'%%). These edge states arise at the interface between the left
and right phononic crystals, whichact as avirtual cavity (Fig. 2d, right).
This can be extended to cases where one of the media is vacuum or a
boundary condition. Insomeinstances, the presence of interface states
canbetracedtothe existence of non-trivial topological invariantsin the
bulk"™, Let us emphasize that this ‘bulk-boundary correspondence’
isnotalways valid"> ¢ and that alternative approaches to define bulk
topology suggest that the origin of certain non-symmetry-protected
edge states may still be traced to the bulk"*'?°,

Breaking inversion symmetry
Systems with inversion symmetry preserve the spatial symmetry or
anti-symmetry of wavefield profiles, such as monopoles or dipoles.

These canbe related to different phononic physical quantities, making
inversion-symmetry breaking a good design strategy for generalized
bi-anisotropic and tri-anisotropic phononic media (Fig. 2e and Box 1).
Thisis the focus of this subsection.

Willis coupling. As discussed, Willis coupling is described by the rank-
three tensorsinequation (7). Ifinversion symmetry (r > -r) is present,
the Willis coupling tensor S (w,q) must satisfy S;(w,q) = -S;(w,-q)
(thesameistrue for S). Hence, there is no Willis coupling in aninversion-
symmetric local material (that is, for S;(w,q > 0)). This can be under-
stood from the fact that Sy relates a vector and asecond-order tensor,
whichdo not have the same symmetries. Conversely, purposely break-
ing the inversion symmetry of the elastic impedance®®'?'?? in meta-
materialsisagood designstrategy toinduce enhanced Willis couplings.
As an example, the top panel of Fig. 2f shows the unit cell of an elastic
structured beam made of resonant meta-atoms whose inversion sym-
metry is broken'?, This directly results in a Willis coupling that relates
the momentum (i,) and strain (9,u,) within the medium. In addition to
the elastic case, breaking inversion symmetry also yields Willis cou-
plingsin the context of longitudinal sound propagatingin fluids™¢>"125,
Forinstance, acoustic Willis couplings have been evidenced experimen-
tally by using asubwavelength asymmetric scattererinalDimpedance
tube measurement'” (Fig. 2f, bottom).

We cangaininsight on the microscopic origin of Willis coupling by
sending asound wave on asubwavelength scatterer (for which ka <1,
where ais the size of the scatterer and k the wavenumber). When the
objectis mirror symmetric, it scatters amonopole field M, asaresponse
to the local pressure p and a dipole field D, as a response to the local
velocity v field, which is captured by a polarizability tensor (inset of
Fig. 2g). When the scatterer breaks mirror symmetry with respect to
the direction of incidence, however, both the pressure and the veloc-
ity contribute to both the monopolar and the dipolar scattered fields.
These cross-polarizabilities correspond to the scattering version of
Willis couplings'** and can lead to strong differences in the backward
scattering from waves impinging from opposite directions. The
forward scattering remains the same as long as reciprocity holds.
Breaking inversion symmetry within resonant scatterers can lead to
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Box 1| Breaking spatial symmetries

The elastodynamic and electrostatic response of a system is
described by its constitutive relations that relate kinetic (stress o,
linear momentum p, electric displacement D) and kinematic fields
(displacement gradient Vu, velocity o,u and electric field E=-V ).

It is possible to generate couplings between these equations by
carefully breaking the relevant spatial symmetries. The system then
becomes tri-anisotropic and can be described by a constitutive
tensor whose off-diagonal constituents correspond to coupling
quantities induced by symmetry breaking'*’. The 1D mass-spring
model in the figure gives a simplified picture of the relation between
spatial symmetry breaking and the associated off-diagonal terms; a
more rigorous description can be found elsewhere'®. Starting from
the case of two identical masses linked by a spring, the application
of symmetrical forces of equal amplitude on both sides of the system
does not change the position of the centre of mass. If the masses

are different, however, the centre of mass moves by Au, which

differs from the displacement of the centroid. This results in the
emergence of a non-zero linear momentum upon the application of a
time-varying symmetrical stress o, described by Willis coupling S#0.
In addition, if the different masses have opposite electric charges, the
time-varying symmetrical stress results in a non-zero global electric
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cross-polarizabilities of the same order as the diagonal ones'*, like
in the split ring (Helmholtz resonator) in Fig. 2g. These can serve as
building blocks for metamaterials showing strong macroscopic Willis
couplings®®, whose asymmetric acoustic responses in reflection are
relevant to wavefront shaping for sound”"*'"** and elastic waves'*>**1*,

as well as for particle manipulation®®.

Piezoelectricity and electromomentum coupling. Combined with
the presence of electric charges, spatial inversion-symmetry breaking

Mechanical inversion symmetry

electric field w
. E=-vp v,

Electro-momentum medium

polarization Ap. In turn, this yields an electric displacement field

D, which is described by a piezoelectric coupling B=0. Building on
this model of piezoelectric coupling, we can couple two identical
dimers, asymmetric in charge and mass, in a mirrored configuration.
This corresponds to spatial-inversion-symmetry breaking of the
piezoelectric coupling itself, which can be modelled by a three
mass-spring system with both mechanical and electrical spatially
symmetric features, preventing the existence of global Willis S=0
and piezoelectric B=0 couplings. Nevertheless, the presence of an
electric field E results in an asymmetric motion of the three charged
masses driven by the Coulomb interaction F,, which changes

the position of the centre of mass of the system. This leads to the
emergence of electromomentum coupling, W, between the applied
time-varying electric potential and the linear momentum. Finally, a
global anisotropy of the medium — different responses as a function
of the excitation direction — can be embedded into a dynamical mass
density tensor. Although additional phenomena should be taken into
account for the theoretical description of these couplings in a real
material'®?, this simplified mass-spring model highlights the origin of
the dynamic effective field-coupling properties as spatial symmetry
breaking at the microscopic scale.

Mechanical and electrical
broken inversion symmetry
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allows one to couple mechanical and electric fields. This electrome-
chanical coupling is a feature of piezoelectric materials and is directly
related to the broken centrosymmetry of their atomic structure'. Itis
evidenced by the change in electric polarization in the material upon
mechanicalstrain. Inturn, theinverse piezoelectric effect corresponds
tothegeneration of stressinresponse to anelectric field. Accordingly,
the stress in a piezoelectric material is related to the gradient of the
displacement field and the gradient of the electric potential field via
the relation 6 = C: Vu + B' - Vg, where B is the piezoelectric coupling
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tensor in stress-charge form and ¢ is the electric potential. Similarly,
theelectric displacement field Dina piezoelectric mediumis afunction
of the same fields through the relationD=B - Vu-A - V¢, where A is
the dielectric permittivity tensor.

Breaking inversion symmetry from the viewpoint of the piezo-
electric properties of the medium leads to an emergent constitutive
coupling between electrostatics and dynamics, as was first shown
using source-driven continuum homogenization™*, and thereafter
using retrievalmethods' and discrete models™’. In these systems, the
electric polarization and velocity fields, as well as the linear momen-
tum and the electric field, are coupled by the ‘electromomentum’
couplings®® (Fig. 2e). As aresult, each one of the kinetic fields (stress,
linear momentum density, electric displacement) dependsonall three
kinematic fields (strain, velocity, electric field; Box 1), and therefore
such materials are called tri-anisotropic materials. In symbolic matrix
notation, the constitutive relations of electromomentum-coupled
materials take the form

S B )Vu
p W ou|
W -A

(o)
s

o
B (10)
D

<

¢

& O

where W and W are the second-order electromomentum coupling
tensors™°. Like the Willis couplings®® and the magnetoelectric
couplings', the electromomentum couplings are required to ensure
that the constitutive relations satisfy physical constraints'*?. Unlike
Willis couplings, the electromomentum effect depends on the circuit
conditions, yielding an intrinsic electrical tunability for wave
manipulation**"**and scattering'*’. Inaddition, recent works analys-
ing the polarizability of electromomentum-coupled scatterers**>*¢
have shown that the polarizability tensor must consider both electric
and magnetic field scattering owing to the time-varying nature of all
fields, and that the polarizabilities coupling mechanical and electric
fields canreach the same magnitude as the diagonal terms, even when
the Willis coefficients vanish'*.

Breaking rotation symmetry

Breaking rotation symmetry permits us to engineer artificial media
beyond isotropic constraints, providing tensorial richness to their
mechanical response (Box 1). Rotational symmetry of the underlying
medium also underpins the conservation of the angular momentum
of the waves, which makes its breaking an efficient tool to control
the chirality of phononic fields. These aspects are the focus of this
subsection.

Anisotropy engineering. Isotropic materials are endowed with full
rotation symmetry. In these systems, waves propagate in all direc-
tions in the same way (equations (1) and (2)). In contrast, anisotropic
materials do not have full rotation invariance. When they are homo-
geneous, the remaining symmetries are contained in a mathematical
object called a point group®”*°. As a consequence of anisotropy, mate-
rial properties must be encoded in (anisotropic) tensors, such as the
elastic tensor C in equation (3). This has important implications for
wave propagation**'*’, As an example, consider a 2D collection of sub-
wavelength resonators consisting of circular cavities carvedinarigid
medium, which individually host a mass connected to the boundary
by springs®*'*® (Fig. 2h, left). Insuch a system, the measurable displace-
ment field does not necessarily coincide with the displacement of the
centre of mass, because the internal masses may be hidden. Hence,

the velocity v associated with the displacement field and the linear
momentum density p are related through p = pv through an effective
mass density tensor of the form

pxx pxy ( )
= , 1

P Py Py
whose components canbe either positive or negative, corresponding
to anin-phase or out-of-phase macroscopic response of the medium,
respectively”. Acoustic waves in such a 2D anisotropic system
can be described by a generalization of equation (1) in which?
ﬁafp = 6,-([p'1],-j6jp) =0,where p'is the matrixinverse of p. Ina coordi-
nate system where the mass density tensor is diagonal, the resulting
dispersionrelation is

(12)

Bpo Bp,

This expression directly shows that the anisotropy affects the
shape of the isofrequency contours of the system, which describe the
spatial properties of wave propagation in the medium at the operat-
ing frequency w in Fourier space. Indeed, depending on the relative
signs of the eigenvalues of the mass density tensor, the isofrequency
contours may have different topologies (open or closed), with funda-
mentally different consequences on wave behaviour'*. Asanexample
of open contour topology, phononic hyperbolic metamaterials support
extremely anisotropic properties, suchasbroadband, diffraction-free
directional ray-like propagation, negative refraction and enhanced
wave-matter interaction*°*>, These features have been evidenced
experimentally for sound using membranes in a 2D waveguide'
(Fig. 2h, right). Other acoustic implementations have been demon-
strated in the context of hyperlenses™*'*, as well as in elastodynamics
using patterned plates™* ™’ and asymmetric pillars'. Following recent
advances in nano-optics™’, sonic hyperbolic metasurfaces have also
been proposed™. Rotation symmetry canbe broken further inthe case
of multilayer phononic structures, leading to extremely anisotropic
and reconfigurable wave propagation, as discussed in the section on
twistronics.

Controlling the angular momentum of waves. In the same way that
aphononicwavefield carries energy and linear momentum, it canalso
carry angular momentum} = L,y + S,y, which canbe decomposedinto
anorbital angular momentum L,y and a spin angular momentum S,
(ref.13). The orbital angular momentumL,, = r x pis associated with
rotations of spatial patternsin the wavefield and typically manifests as
helicoidal wavefronts, as shown in the top panel of Fig. 2i in the case
of an acoustic Bessel beam'®. The spin angular momentum is associ-
ated withrotations of the polarization associated to the vector part of
the wavefield. In acoustic waves, this means that one has to take into
account the velocity field inaddition to the scalar pressure field">'¢>-1%,
The corresponding spin density S,,, = Im(p,v* x v)/2w, where p, is the
density of the fluid and v its velocity field, vanishes upon integra-
tion over the entire medium in homogeneous media, but it can be
non-zeroin the presence of field inhomogeneities'*>'* and for surface
waves'***8_ Hence, both elastic'*”° and acoustic waves can carry aspin
angular momentum (Fig. 2i, bottom).

Based on this, one candirectly manipulate the angular momentum
of phononic waves by engineering the breaking of rotationinvariance
of the propagating medium. For instance, it is possible to generate
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L,vinbothacoustics and elastodynamics by using spiral-shaped tube
sections”"'”2 or with multiple sources with tailored phase delays'”>.

Onecanalsoimplement suchrotation-symmetry breaking in the reso-

nant structure of metasurfaces” "’ to induce helicoidal wavefronts.
Besides, the reduced planar rotation symmetry in some topological
phononic crystals can be related to modes showing a local orbital
angular momentum, which can induce vortices in the far field"®™®,
Breakingrotationinvariance canalsolead to spin-momentum locking,
in which the direction of linear momentum determines the direction
of S,y (ref.164), leading to spin-dependent propagation and selective
wave routing at waveguide intersections'®.

A phononicspin-orbit coupling between orbital and spinangular
momenta canalsobeinduced by amismatch between the rotation sym-
metries of the unit cell and the lattice. For instance, the elastic version
of this behaviour has been obtained in microstructured mechanical
materials®>'® that twist in a specific direction when pushed along their
axis, and proposed in quasicrystals'®. Inacoustics, spin-orbit coupling
emerges in metastructures of dipolar modes with twisted intercell
couplings, resulting in chirality-induced negative refraction'. These
ideas have been applied in the context of imaging'®’, multiplexing'®®
and particle manipulation'®'%%,

Breaking non-spatial symmetries
Usual phononic materials and their idealized versions show several
non-spatial symmetries that are tightly connected to the specificities

of the temporal dimension: reciprocity, time-reversal invariance,
time-translation invariance and energy conservation. These symme-
tries, which arerelated to each other (Box 2), impose strong constraints
onthebehaviour of waves. Therefore, the combined breaking of spatial
and non-spatial symmetries provides numerous opportunities for
advanced phononic wave engineering, whichis the focus of this section.

Breaking reciprocity
Spatial asymmetries can tailor the reflection and absorption of waves
from opposite sides of a material, but are not sufficient to produce a
genuine asymmetry inthe transmission of waves between two pointsin
space, like one would have ina diode'**. As awave propagates through
amaterial, itundergoes a phase shift proportional to the distance trav-
elled and an amplitude change due to the presence of losses. Usually,
these modifications do not depend onwhether the wave travelsto the
right or to the left, even in ainhomogeneous and arbitrarily shaped
medium®°, The reason for that is a discrete non-spatial symmetry
known as reciprocity, which relates incoming and outgoing waves in
ascattering process (Box 2). Non-reciprocal phononic media, where
this symmetry is broken, can asymmetrically transmit mechanical
energy, with potential applicationsininformation and heat transport.
Inpractice, most ways of breaking reciprocity entail breaking spa-
tial symmetries as well as time-reversal invariance (¢ > —t), another fun-
damental discrete non-spatial symmetry that corresponds toreversing
the flow of time, like watching the dynamics backwards. From the

Box 2 | Non-spatial symmetries from a scattering perspective

The scattering matrix S summarizes how waves are reflected and
transmitted (scattered) off an object®". It has the same content as
the transfer matrix, organized in a different fashion. Mathematically,
it relates the amplitudes s and s or incoming and outgoing waves
through different ‘channels’ (labelled by @, B...) through s3"'=S QBSB

The channels can be physical (waveguides) or abstract (different
angles or polarizations).

In terms of the scattering matrix, the fundamental non-spatial
symmetries that can be present in a phononic medium are'®195429
reciprocity S=S', energy conservation SS'=1and time-reversal
invariance SS*=1. These symmetries are different from each other,
so it is possible to have a medium response such as reciprocity
without energy conservation (for example in a passive lossy medium).
However, any two of the symmetries imply the third, so a lossless
medium that is also invariant under time reversal must be reciprocal.

The scattering matrix associated to a set of resonant modes can
be computed starting from coupled-mode theory. When the system
is coupled with the outside environment (through the channels a),
equation (6) becomes®*°

8= Lynn@n = Toan@n + WingSim and soU'=S%sp + Wy, (20)

in which the operator L describes the behaviour of the uncoupled
system (H=iL would be the Hamiltonian), I"and W represent the loss
and gain in the system due to exchanges of waves with the channels,
respectively, W represents the emission of waves in the channels from
the resonant modes, and S° is the scattering matrix that the system
would have if there were no resonant modes, that is, when a=0.
Probing the system with monochromatic waves at frequency w

eventually imposes a(t)=Ae ™. Eliminating the resonant modes a(t),
we then find that the effective scattering matrix such that s°“t=S¢s™
reads

(21)

S =8O —WIL-T +iw]'W.

This equation is known as the Mahaux-Weidenmiiller formula“®°.
In a system where energy is conserved, S®is unitary (S°'S°=1), L is
anti-Hermitian (L=-L"), and one must have 9,/|al*= ||s'"|| — 1513,

leading to a self-energyl = 1/2W WandtoW=-W S .Whenin
addition S°=1, the Mahaux—Weldenmuller formula reduces to the
more familiar form S =1+ W'[L - WW +iw] 'W. In this framework,
losses can be modelled by addltlonal channels a with s'” =0(on
average), and for which one does not monitor the output sg“t. Indeed,
any purely dissipative (positive-semidefinite) loss term I" can be
modelled this way**' by adding enough ports and setting W« /™2,
From this scattering perspective, we reach three conclusions:
engineering the coupling of a closed system to a radiation continuum
is a way to induce effective non-Hermitian properties; the symmetries
of L, and of the couplings directly influence those of S; and one can
engineer poles and zeros of S, and even operate near them by
exciting the system with complex frequencies. When the operator L
depends explicitly on time, it is not possible to focus on a single
frequency w, and the above formalism has to be adjusted to account
for the energy transfer to frequency harmonics. Note that the
scattering matrix S and the coupling operators W and W introduced in
this box are different from and unrelated to the Willis and
electromomentum coupling tensors S, W and W in equation (10).
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perspective of wave propagation, time-reversal invarianceisrelated to
the microscopic reversibility of the medium where waves propagate,
which s violated by the presence of external biases such as magnetic
fields or rotation. Yetin systems where energy isnot conserved, itisin
principle possible to have non-reciprocal systems that are time-reversal
symmetric'**'*, We refer the reader elsewhere''>'>"8 for more details
onreciprocity in wave propagation.

Breaking reciprocity through an external bias. A common way of
breaking reciprocity is toimpose an external bias whose sign reverses
under time-reversal symmetry, such as a magnetic field. Microscopic
reversibility implies that the symmetry of the transmission coefficients
is preserved only by reversing the bias when flipping the propagation
direction. In contrast, holding the bias constant when interchang-
ing source and receiver positions typically leads to a non-reciprocal
response’”., Thisworks well in electromagnetism'’ because the propa-
gation of light in certain materials is strongly influenced by available
magneticfields. Itis also possible with phonons, for instance through
magnetoacoustic couplings®*®?”", but the effect is often weak. For
instance, non-reciprocity induced by magnetoacoustic effects has
been predicted and observed in surface acoustic waves?°>?*, and
can be strongly enhanced by the coupling with non-reciprocal spin
waves?**2%, Alternatively, one can use other external biases such as
fluid flow*” ', rotation®" or odd/Hall viscosity.

In this context, the use of resonant components enables strong
non-reciprocal effects with flow speeds much lower than the speed of
sound. For example, a highly non-reciprocal acoustic circulator for
audible sound was created using a ring cavity with a fluid spinning at
afraction of the speed of sound*” (Fig. 3a). In the absence of an external
bias, the two lowest-frequency modes in the circular cavity are degen-
erate with frequency w,. These correspond to clockwise and counter-
clockwise propagating waves, for which the pressure field takes the
form p.(r,¢) -~ ¢ where -~ indicates proportional to, in polar coordi-
nates, that can be combined into standing waves. When a background
velocity field v is imposed (for example with fans), the frequencies
of these modes undergo a Doppler shift Aw./w, ~ tv/c, leading to
an acoustic Zeeman effect?**? that lifts the degeneracy. The
resulting system can be captured by the coupled modes equation
.= (iw,~y)a,+ W, (s inwhichW, ,= [2y,/3 exp(¥21/3(a - 1))rep-
resents the couplingto the three equispaced channelsin Fig.3a. Apply-
ing equation (21) gives the corresponding scattering matrix. In the
simplified case where y, = yand the systemis excited at w = w,, we find
that the transmissions between the channels1and 2 are

N RN
Nea= ISl =—— ——7%5, (13)
I+ (Aw)?)
fromwhichweseethat T, # T,,,when Aw # 0, meaning that the system
isnot reciprocal, and that it is possible to tune Aw to have T, = 0.
This designwaslater used as abasis for theoretical and experimen-
talinvestigationsintopologicalacousticsin which therings are put on
alattice’ ™, for non-reciprocal wave manipulation in the context of
Janus metasurfaces®” and to create non-reciprocal mode conversion
inan elastic waveguide®®. Alternatively, it is possible to have the fluid
flow by itself, if it is made of self-propelled active components'>*?22!,
It is also possible to create non-reciprocal Willis couplings in
spatially symmetric systems through external biases whose sign
reverses under time-reversal symmetry. Going back to the example of
Fig. 2g, the normalized cross-polarizabilities «,, and «,, relating the

acoustic monopole M, = a,,p + &,,v and dipole D, = a,,v + &,,p to the
pressure and velocities are also constrained by reciprocity, which
imposes™ a,,= - a;,,. This constraint can belifted by a constant bias*?,
as in the spatially symmetric acoustic resonator embedded with a
rotating flow in Fig. 3b. In a lossless system, this leads to &, = dg,,
(asituationreferred to as ascattering version of odd Willis couplingin
ref. 222), as showcased by the overlapping blue and red lines on the
right panels of Fig. 3b. This results in a different power extinguished
by the scatterer when excited from the left or from the right, in stark
contrast with the reciprocal cross-polarizabilities obtained through
inversion-symmetry breaking alone.

Breaking reciprocity by combining spatial asymmetries and non-
linearity. In nonlinear systems, it is possible to break reciprocity
dynamically, without an external bias******, for instance by combin-
ing spatial asymmetries with a medium whose properties depend
on the amplitude of the wave. Putting a lossy material on one side
of the nonlinear medium effectively makes the wave interact with a
different medium when excited from either side, making the trans-
mission direction-dependent, that is, non-reciprocal. This simple
mechanism has beenimplemented and studied fundamentally**>?>22%,
together with other nonlinear schemes based on related phenom-
ena, such as phononic bandgaps***°, frequency conversion®' 2%,
self-demodulation’””***, prestretched linkages® and hysteresis**°.
The combination of spatial asymmetry and nonlinearity isacommon
ingredient in all these schemes, as showcased by the non-reciprocal
phononic wave transmission stemming from the intrinsic nonlin-
ear acoustic radiation pressure at an interface between water and
air*” (Fig. 3c).

Non-reciprocal continuum phononic media. In the case of continuum
media, reciprocity can be framed as alink between two different exci-
tations and the corresponding responses. This constraint is known
as Maxwell-Betti or Lorentz reciprocity. In the case study that we
introduced at the beginning of the Review, it implies that*’

Ciwe=Craj  Sj=Ski ~ Py=Py- (14)

For materials with electromomentum coupling, reciprocity fur-
ther implies that ;= W;*****. When the elastic tensor is real valued,
breaking its major symmetry (Cy, # Cy,;) also requires the violation
of energy conservation. The same holds for the mass density tensor:
active metamaterials witha non-reciprocal p;have beenrealized using
feedback loops™’. This is not the case for Willis coupling, for which the
constraint due to energy conservationis different'?**’, Aswe discussed,
one of the simplest ways, mathematically, to obtain Willis coupling
is to consider sound waves in a moving fluid, for which we obtain an
energy-conserving non-reciprocal bi-anisotropic coupling®*’. Starting
from the linearized conservation of mass ($d,p = -0,v) and of linear
momentum (p,0,v = -0,p), which combine into equation (1), and per-
forming a Galilean boost (9, ~> 9, - v,0,) to account for the motion of
the fluid at speed vy, we end up with

axu __ ﬁ 6 atp 2.
ool e afat)ro

where§={=v,fp,+ O(vQ) is cast as purely non-reciprocal acoustic
Willis couplings. A similar feature occurs in colloidal solids driven by
aflow*”**"*2 Non-reciprocal Willis couplings have also been discussed
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Fig.3|Phononic phenomenainduced by breaking reciprocity, time-reversal
and time-translation symmetry. a, An acoustic circulator based on a three-
portcavity withembedded flow (left) at the resonance frequency produces

zero transmission from port1to 2, and full transmission from port1to 3 (right).
b, Experimental measurement of acoustic polarizations corresponding to odd
Willis coupling induced by time-reversal symmetry breaking within abiased,
spatially symmetrical scatterer. Here, the bias consists of an asymmetric flow,
obtained with amotorized fan. ¢, Non-reciprocal ultrasonic transmission
induced by the combination of spatial asymmetry and nonlinearity stemming
from the acoustic radiation pressure at the interface between air and water: no
signal is transmitted through the device in the backward configuration (left),
while sound transmission mediated by radiation pressure in the fluid is permitted
inthe forward configuration (right) d, A shock wave propagatingin a chiral fluid
yields a directional transverse flow, as evidenced by the non-zero velocity u,in the
direction orthogonal to the shock (colour bar). e, Chiral biological tissues exhibit
odd viscoelasticity, leading to transverse responses (red arrows) to constraints

generated by cell proliferation and extrusion (blue arrows)?*. f, Band structure of
aFloquet topological insulator for sound (left) based on unit cells with a periodic
time modulation of the acoustic capacitance C = C, + AC(¢) at the frequency w,,
withadirectional angular phase profile (top right), resulting in a topologically
protected, non-reciprocal acoustic leaky-wave antenna (bottom right).

g, Flexural wavepackets crossing a spatiotemporal interface upon the abrupt
deformation of a soft elastomer (left). The experiment is carried out by abruptly
stretching the medium using a motor while mechanical waves are launched in the
medium (top right). This results in the non-conservation of both wavenumber
and frequency between the impinging and refracted wavepackets, as shown in
the real space-time diagram (middle right) and frequency-wavevector diagram
(bottomright). This leads to different behaviour depending on the excitation
direction. Panel aadapted with permission fromref. 212, AAAS. Panel b adapted
fromref.222, CCBY 4.0. Panel cadapted fromref. 227, CC BY 4.0. Panel d adapted
fromref. 254, Springer Nature Limited. Panel fadapted from ref. 274, CC BY 4.0.
Panel g adapted with permission from ref. 303, American Physical Society.

in passive systems such as moving fluids in zero-index metamaterials®*°.

Toinduce strong non-reciprocal Willis effects going beyond the limita-
tionsimposed by passivity******, active mechanisms such as electronic
feedback loops****, spatiotemporal modulation*” and thermoacoustic
amplifiers®*® have also been considered.

In (meta)fluids and viscoelastic media, non-reciprocal responses
canalsobeencodedinviscosities that violate reciprocity, known as odd
or Hall viscosities*****°, corresponding to phonon Hall viscosities*' >
inthe context of phononsinsolids. The Navier-Stokes equations take
thegeneral form

p(0, +v,0)v;=—0,p + 0,0, (16)

whereg; =g+ .. ,0,,is thestress tensor, splitinto a hydrostatic and
aviscous part. Tﬁe viscosity is encoded inatensor 7, and reciprocity
imposes that ;, = 17,,;. This constraintis, for instance, brokenin chiral
fluids made of actively spinning components and in magnetized pol-
yatomic gases and plasma®°. Consequences include non-reciprocal
wave propagation>**%2542¢0 which can affect turbulence in the non-
linear regime?®® as well as topologically protected boundary
modes"??"**¢ and nonlinear shock waves in compressible fluids">**>%*
(Fig. 3d) and biological tissues*” (Fig. 3e). These are typically mani-
fested in transverse responses, for instance in the velocity field along
the piston in ashock (colour in Fig. 3d) or edge flows (red arrows in
Fig.3e) thatarearesponse to the flows towards the middle (blue arrows)
due to the proliferation of cells in tissues.

Breaking time-translationinvariance

Breaking time-translation invariance entails changing the physical
properties of asystemin time, so that wave excitations effectively see
adifferent system or medium at different times. These time-dependent
modulations require anactive drive, whichmay inject or remove energy
fromthe system. They can be designed to tune spatial and non-spatial
symmetries of the system almost at will, at the price of a higher com-
plexity and costin design and operation compared with static systems.
This approach permits one to adapt ideas related to the breaking of
spatial translation invariance, although the specific nature of the tem-
poral dimension and its ties to causality provide additional physical
constraints that result in fundamentally different wave phenomena.
In the case of periodic time modulations, time-translation invariance
remains discrete, yielding the emergence of frequency harmonics.
Single temporal interfaces result in different laws of refraction and

reflection stemming from the conservation of momentum rather than
frequency asin their spatial counterparts. These aspects of phononic
time-varying media are reviewed in this section.

Time-periodic modulations. Although the time dependence can be
arbitrary, theoretical and practical investigations have largely focused
onperiodic temporalmodulations, because these are easier to handle.
These driven systems are called Floquet systems**2¢®, and sometimes
‘time crystals’; we emphasize that this is a distinct concept from time
crystals in statistical physics*”?"° and biology*”"*"%

InFloquet systems, the dynamics are described by a periodically
driven Hamiltonian H(t) obeying H(t) = H(t + nT,) for any integer n,
where T, isthe modulation period. In contrast with time-independent
systems, in which the linear response only occurs at the excitation
frequency w, periodically driven systems may show aresponse at har-
monic components w + nw, (n € Z) spaced by w, =21/T, (ref. 273),
which are referred to as sidebands. Mathematically, the Floquet
theorem?® decomposes the evolution operator U(t) = V(t)e'®eftassoci-
ated with H(¢) into a T-periodic micromotion V(¢) = V(t+ T,) and a
long-time evolution described by a time-independent effective Ham-
iltonian H,g, called the Floquet Hamiltonian. For instance, Fig. 3f shows
atight-binding lattice of trimers of cavities whose acoustic capacitance
is modulated in time**, which shows sidebands as a repetition of the
band structure along the frequency dimension. Floquet modulations
can also result in wavenumber gaps, rather than frequency gaps asin
their spatial counterparts. These host both amplified and damped
modes that can exist because of the lack of energy conservation, as
investigated in the context of spatial filtering®”.

Itis possible to break time-reversalinvariancein Floquet systems
by choosing a H(t) thatis not an even function of time. (More precisely,
we want to break time-reversal invariance OH(¢)0™ = H(-t) inwhich ©
is the time-reversal operator. When a basis can be chosen so that H(t)
isreal and @ acts trivially, then this constraint reduces to H(t) = H(-t),
but this is not always true.) This is what happens in the modulated
lattice of Fig. 3f, where the band degeneracies of the static medium
arelifted upon dynamic modulation due to broken time-reversal sym-
metry induced by a spatially rotating phase profile?”*. This caninduce
non-reciprocal phonon effects with polarized coherent light**. A nota-
bleexampleisthe phonon-mediated control of the magnetic properties
of alattice of spins to induce giant paramagnetism*”’, phonon-driven
magneto-valleytronics®®, or ferroelectricity”””. Slower Floquet modula-
tions that break time-reversal symmetry can effectively impart some
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form of momentum and allow for strong non-reciprocal®*°¥ or topo-
logical responses?*?$?%? or non-reciprocal acoustic devices such as
robust leaky-wave antennas (Fig. 3f). It is also possible to emulate
Floquet physics through the propagation of wavesin static but spatially
modulated media®° 2",

Timeinterfaces. Recent works have focused onthe temporal analogues
of spatial interfaces, which induce novel scattering wave phenomena
thatemerge whensudden, non-adiabatic changes occur to the proper-
ties of a medium without breaking spatial-translation invariance. For
example, a temporal interface can be induced in a uniform medium
in which the spatially uniform refractive index suddenly changes.
Temporal reflections and transmission emerge at such temporal
interfaces, with associated temporal Fresnel coefficients and a con-
servation of overall momentum instead of frequency and energy due
to broken time-translationinvariance but preserved spatial-translation
symmetry?*>**, Specifically, the incident wave is time reversed upon
temporal reflection (negative frequency), in stark contrast with the
conventional mirrored spatial reflection (negative wavevector). Vari-
ousworks have investigated these phenomena, both theoretically and
experimentally,in1D and 2D** >, An example is the refocusing of water
waves at the surface of a basin undergoing a rapid change in gravity*”,
effectively behaving as an instantaneous version of a time-reversal
mirror®”. Soft elastomers®°°*%, whose material properties depend on
the medium deformation®®, are also a promising platform to imple-
mentspatiotemporal interfaces for phononic waves®”, inwhich aspatial
interface travels atafinite velocity. The result of thisinterface breaking
both spatial and temporal translation invariance are shown in Fig. 3g,
demonstrating the non-reciprocal conversion of both wavenumber and
frequency for awavepacket impinging across the interface.

Breaking energy conservation

On a fundamental level, energy conservation is a consequence of
time-translation invariance. In this section, we focus on systems where
energy is not conserved, but that are effectively described by a
time-independent equation. In this case, energy conservation means
that some operators are Hermitian or anti-Hermitian. Consider the
coupled-mode theory equation (6). If the energy E of the waves is pro-
portional to||a|? = Y m Ama,, (Where the star represents complex con-
jugation), then d,E =< d{a,(L + L")a), inwhich (.,-) is a Hermitian inner
product and T represents the conjugate transpose, and so energy is
conserved when L =—-L', that is, when L is anti-Hermitian. In this case,
the eigenvalues of L are purely imaginary and correspond to the fre-
quency of oscillation of the modes. Equivalently, it means that the Ham-
iltonian H=iL is Hermitian. Conversely, systems with loss and gain are
described by non-Hermitian (or non-anti-Hermitian) operators, leading
to various properties common to these systems>’*. In this section, we
discuss how a careful engineering of energy balance through gain and
losses canbe used to tailor wave propagationinlossy and active systems.

Balancing losses with gain in PT-symmetric systems. Systems
in which the eigenvalues of the Hamiltonian H (the frequencies of
oscillation) are purely real are called pseudo-Hermitian®***® or
PT-symmetric. This includes lossless systems in which H=H', but also
systems where gain and loss are present but balanced. The label PT
originally referred to the combination of parity P(space inversion) and
time-reversal T, but it turns out that a more general class of systems
shows the same mathematical properties®***”, for which there is an
anti-unitary operator PTwith (PT)? =1, such that PTH = HPT.In systems

with (generalized) PT-symmetry, energy is not conserved in general, but
when PT-symmetry is not spontaneously broken, it is effectively con-
served whenthe systemoscillatesinasingle eigenmode. Arelated sym-
metry known as anti-parity-time (APT) symmetry (inwhich PTH = -HPT)
has also been considered to control heat transfer**®, When H=iL, H
is PT-symmetric onlyif L is APT-symmetric, and conversely*®,

For example, consider a lossy resonator with complex eigenfre-
quency w, +iyand coupleittoanidentical resonator with gain. We may
aim at compensating the decay in the first resonator by choosing the
amplification rate of the second one to be exactly equal to the loss rate
of the first, that is, with intrinsic eigenfrequency w, — iy. If k denotes
the rate of energy coupling between them, the Hamiltonian becomes

"
H:(wo iy ' J
K wo-iy

Thecorrespondingeigenvaluesarew, + .,/ k2 - y2 and the eigenvec-
tors are proportional to [iy+./x2- y2, kT . In the weak-coupling limit
where kis small, the system supports two distinct modes, with complex
conjugate eigenvalues, close to those of the individual resonators. One
mode is mostly localized in the gain resonator, and it grows in time,
while the other decays in time at the same rate, as it mostly resides in
thelossy resonator. Aninteresting phenomenon happensin the oppo-
site regime of strong coupling, where k > y. When the energy has time
to circulate back and forth between the resonators before decay or
gain happens, gain and loss effectively compensate each other, and
the eigenvalues of the system (although described by anon-Hermitian
matrix) are purely real, thatis, the modes do not grow or decay in time.
This demonstrates the possibility of engineering non-Hermiticity and
symmetries in a useful way, and the opportunities provided by
PT-symmetry in the design of resonant phononic systems® %,

The eigenvectors of non-Hermitian matrices no longer neces-
sarily form a complete basis, and are no longer orthogonal. Extreme
cases occur where two eigenvectors become collinear and share the
same eigenvalue, asituation known as an exceptional point®*~', This
happenswhen k =yinequation (17), for which His not diagonalizable.
The coalescence of the modes associated with the exceptional point
has been evidenced in a two-level system consisting of two tightly
coupledacoustic cavities with controllable asymmetric dissipation®*
(Fig. 4a). Moreover, the form and topology of the Riemann sheets
formed by the eigensurfaces around an exceptional point has sparked
various studies, such as the effect of dynamic encircling of exceptional
points®**” to control the mode transmission, leading to optimized
sound absorption®°, or the use of exceptional points for sensing***>%,

17)

Scattering in PT-symmetric systems. The scattering matrix S (Box 2)
of alossless system is unitary, and in the steady state the outgoing
power is always equal to the incident power. Gains and losses affect
this property and make the scattering matrix non-unitary. In particular,
PT-symmetric systems can restore the flux conservation when operated
under proper conditions (just like PT-symmetric cavities show no decay
inthe strong coupling limit when operated at a single eigenmode). In
the case of scattering, PT-symmetric systems can support anisotropic
transmission resonances®”, such that the system s totally transparent
from one side, like a lossless system, but it strongly reflects from the
opposite side. This response has been experimentally realized in a
two-port acoustic system with active components** (Fig. 4b). Under
this condition, gain does not simply compensate losses (S;, = S,, =1), but
italso cancels thereflection of the system fromthe lossy port (S;; = 0).
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Excitation of the system from the opposite side yields strong reflec-
tions, despite the fact that full transmission is supported because of
reciprocity, whichis possible because energy conservationis broken by
the presence of gain and loss. By extending this concept, it is possible
toturnacomplex disordered acoustic system, initially opaque, into a
completely transparent one, by adding a distribution of gain and loss
tailored to counteract the arbitrary impedance fluctuations initially
present®”, This results in a constant-pressure sound wave within an
inhomogeneous sample consisting of a 1D array of active acoustic
scatterers (Fig. 4c). Applications related to cloaking** and directional
sound emitters®” have also been explored.

Virtual gain or loss through complex frequency excitations. The
presence of gain or loss in a medium implies the respective temporal
growth or decay of the waves propagatingin it. These aspects are associ-
ated with zeros and/or poles of the scattering matrix that are located
outside of thereal axis in the complex frequency plane, making themnot
reachable with amonochromaticexcitation with purely real frequency.
The usualway to circumvent this problem amounts to engineering the
physical gain and loss in the system to move these poles and zeros
towards the real frequency axis**®. Alternatively, one candirectly access
the complex poles and zeros by exponentially increasing or decreasing
intime the amplitude of waves used to probe the system. This effectively
makes the operating frequency complex®”” and enables the excitation
of scattering features beyond what is possible with a purely monochro-
maticsignal onthe real frequency axis. By doing so, itis possible to make
passive systems effectively behave as if they had controllable gain or
loss, without the inherent issues of stability and energy consumption
associated with active protocols, which can make their practical realiza-
tion challenging. Firstintroduced in photonics®**°~*, these concepts of
virtual gainand loss have been applied to various non-Hermitian wave
phenomena. Forinstance, virtual coherent absorption of elastodynamic
waves has been achieved using counterpropagating signals exponen-
tially growing in time, with a growth rate matching the leakage of the
resonantinclusion®***, Besides this, atemporally decaying signal has
been used to implement the transient version of the non-Hermitian
skin effect®”, If applied to lossy superlenses, this virtual gain permits
the dissipation in the system to be effectively compensated, enabling
the recovery of their full subwavelength imaging potential, which is
limited by non-local constraints®* (Fig. 4d).

Amplification and nonlinearities. The presence of gainin a linear
system eventually triggers nonlinearities that either stop growth or
destroy the system. A typical example in wave physics is the appear-
ance of alimit cycle, where the system starts oscillating by itself. This
canbeillustrated using coupled-mode theory (Box 2) by the equation

2

“72}1 ~iw+ (- p)a-plaj’a+ Oa® (18)
a+pBlal

d=iwa—ya+(

for asingle complexmodea(t). The second term represents saturable
gainwithamplitude a, which canbe Taylor-expanded at small |a| so we
recognize the equation of aStuart-Landau oscillator’”: when a > y, the
state |al = 0 becomes linearly unstable and a limit cycle describing
spontaneous oscillations of the forma(¢) = \j (@ - )/, el“*®oappears.
Thisis the basis of the operation of alaser. Indeed, phonon lasers, the
mechanical equivalent of light lasers, have been proposed and realized
inseveral platforms®’*, Limit cycles, which can occur because of the
presence of gain and loss, spontaneously break time-reversal

symmetry (in addition to time-translation invariance). This can be
harnessed to produce non-reciprocal scattering responses with
reduced losses******, For instance, asonic circulator based on spinning
aeroacoustic limit cycles was realized** (Fig. 4¢). An air flow orthogo-
nal to the whistle cavity provides some gain that drives the systeminto
alimit cycle whose sustained radiation synchronizes with theincident
wave to compensate for absorption losses. More generally, nonlinear
phononic media can exhibit avariety of phenomenarelated tounder-
lying broken energy conservation and the possible spontaneous break-
ing of time translation, ranging from nonlinear travelling waves such

as shocks and solitons to chaotic attractors>*34,

Non-Hermitian skin effect. The non-Hermitian skin effect (NHSE) is
a feature of certain non-Hermitian systems*******_in which eigen-
values and eigenmodes are highly sensitive to boundary conditions.
Physically, it leads to the directional amplification or attenuation of
waves within the medium and to field accumulation on some specific
boundaries. Inits simplest realization, the NHSE can beillustrated by a
1D chain of asymmetrically coupled resonators similar to the quantum
Hatano-Nelson model****’,In phononics, this canbe captured by the
coupled-mode equation

0.a,=ilwa,+Kk,a,,,+ Kk a, 1, 19)

where integers n label the resonators, and where the amplitudes of
the couplings ¢, to the left and to the right are different, mimicking a
biased random walk. This effect has beenrelated to the point gap topol-
ogy of the corresponding non-Hermitian Hamiltonian', In phononic
media, the NHSE has been investigated in the presence of asymmetric
couplings*°7%, odd elasticity®****” and odd mass densities®*’. Some
designsuseelectronicfeedback loops between microphones and speak-
ers to obtain the NHSE for sound®?, as shown in Fig. 4f, which shows
the accumulation of the acoustic signal at asingle boundary, whatever
the source position. The NHSE can also be observed inwaves reflected
by lossless topological systems, where it can lead to non-reciprocal
Goos-Hinchen shifts*®,

Active continuum phononic media. Aswe discussed, the elastic tensor
in equation (7) violates reciprocity when Cy, # Cy;. Similarly, energy
conservation is violated whenever Cy, # G (ref. 237) (both con-
straints match when C is real valued). Such a situation, known as odd
elasticity, canarise from the presence of non-conservative microscopic
interactions***°and has been realized with active elements****°, asin
the example in Fig. 4g, showing a beam decorated with piezoelectric
patches with designed feedback loops®’.In such ametamaterial, qua-
sistatic cycles between the bending and shear modes are associated
with a non-zero amount of work whose sign depends on the cycle
directionality. Such cycles could have implications for energy harvest-
ing and sensing, and enable active wave propagation and instabilities
within overdamped media******' as well as adaptive locomotion of
active solid metamaterials®*° (Fig. 4h). Conversely, the presence of
these cycles means thatitisimpossible to have odd elasticity inasystem
where energy is conserved. Similarly, constraints on other material
coefficients (such as p; and S;;) due to energy conservation*” can be
broken in media where energy is not conserved®>*>,

When Cy, depends on frequency, it can also include a viscous
part that dissipates energy, but can be passive. The combi-
nation of the two leads to a viscoelastic medium?**° in which
Giike(@) = G p(0) +iw 17, (0) + O(w?), where C;,(0) and n;,(0) are the
(zero-frequency) elastic and viscous tensors.
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Generalized symmetries

In this section, we discuss several situations in which it is fruitful to
consider the symmetries of multiple systems at once. We first discuss
how the interface between two systems that have different symmetries
(or different representations of the same symmetry) can host topo-
logical surface states. Then we discuss how generalizing symmetries
to families of systems depending of parameters can allow us toidentify
additional hidden symmetries and to construct isospectral crystals.
Next, we discuss how interpolating between different breakings of
spatial-translation invariance can be used to enhance the control of

:

Qutput in sync

the dispersion relation of phononic crystals. Finally, we discuss how
in multilayer systems the symmetries of each layer can be harnessed
to tailor wave propagation.

From symmetry to topology

Topological band theory is a framework that harnesses tools from
topology to understand and control the behaviour of waves in materi-
als, including their interfacial response. Symmetry plays a key role in
the design of topological phononic crystals. In a nutshell, edge states
often occur when the symmetry of states onboth sides of aninterface
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Fig. 4 | Phononic phenomenainduced by breaking energy conservation.

a, Atwo-level non-Hermitian system made of two tightly coupled acoustic
cavities witha coupling k and controllable asymmetric loss I (top), which enables
the demonstration of the coalescence of the two modes at the exceptional point
(bottom, inset), evidenced by the merging of the two transmission peaks
depending on the loss amount /. b, A unidirectionally invisible acoustic sensor at
the design frequency f, based on PT-symmetry, showcasing unitary transmission
(5,,=S5,=1). The sensor is reflectionless from one side (S, = 0) but has strong
reflection from the other side (S,,, bottom, grey dashed line). Here, gain and loss
are obtained with impedance circuit design through the use of different electrical
loads Z, inthe two speakers. ¢, Inadisordered Hermitian acoustic system, part of
theincidentsignal is reflected owing to spatial variations of the medium
properties (bottom left, grey area), but a tailored gain-loss distribution permits
to obtain perfect transmission through the sample, along with no pressure
variations within the system (bottom right). This non-Hermitian design has been
implemented discretely using electrodynamic loudspeakers with a controlled
acousticimpedance (top). d, The resolution of a conventional acoustic superlens
is limited by its non-locality, which makes ky, the largest accessible wavenumber,
and by inherent dissipation, which pushes the corresponding unitary
transmission T(ky,,w*) = 1below the real frequency axis (top). Using the
associated complex excitation (w*= wg* +iw,*), whose imaginary partis related to
thelosses of the system, instead of the monochromatic signal (wg*), resultsina
virtual gain that effectively compensates the losses in the lens and leads to
enhanced resolution (bottom). e, A three-port nonlinear acoustic cavity hosts a

limit cycle that continuously radiates a signal (yellow) through the ports; this
signal synchronizes with the incident harmonic wave (blue), gaining energy
from the limit cycle’s emissions. In the presence of a bias, this enables loss-
compensated non-reciprocal transmission. f, Non-Hermitian skin effectina
chain of active acoustic resonators based on asymmetric couplings, which are
implemented using active feedback loops between speakers and microphones
(top). The plot shows the directional field accumulation towards the left side of
the chain, whatever the source position (bottom). g, Odd properties of the elastic
response of amechanical beaminduced by using electrically controlled
piezoelectric patches. In such amedium with an odd micropolar modulus P
describing the asymmetric coupling between bending and shearing of the

beam, a quasistatic cycle between bending and shear motion of the unit cell is
associated with a non-zero work per unit volume whose sign depends on the
direction of the cycle. h, Odd elastic mechanical systems can harness their
work-generating cycles to produce emergent active functionalities, asillustrated
by this adaptive wheel that displays uphill locomotion on agranular bed. Its
propulsionis driven by odd couplings between two of its shear modes S, and S,,
whose shear-space trajectory is a noisy limit cycle (inset). Panel a adapted from
ref.314, CC BY 4.0. Panel b adapted fromref. 324, Springer Nature Limited. Panel ¢
adapted fromref. 325, Springer Nature Limited. Panel d adapted from ref. 336,
CCBY 4.0.Panel eadapted fromref. 343, CCBY-NC-ND 4.0. Panel fadapted from
ref.352, CCBY 4.0. Panel gadapted fromref. 359, CC BY 4.0. Panel h adapted from
ref.360, Springer Nature Limited.

does not match. More precisely, consider a system depending on a
parameter psothataband crossing occurs where twoirreducible sym-
metric representations cross each other at some critical value p.. At
the interface between p <p.and p > p., aband crossing is susceptible
to occur to interpolate between the band structures on both sides. In
suchasystem, thereis abandgap onbothsides of the interface (when
p#p.), butthe gap closes at the interface. The existence of such an
edge state is to some extent unavoidable and related to the topology
oftheband structure. This exampleillustrates ageneral principle that
has been formalized in group-theoretical terms under the name of
topological quantum chemistry**>*%, allowing a complete catalogue
of topological phononic media to be obtained®*.

Thelifting of band degeneracies through symmetry breakingis a
common starting point for creating bandgaps and topological bound-
arymodes. Thisis the case for Dirac conesin honeycomb lattices, singu-
larities protected by time-reversal and inversion symmetries. Breaking
time-reversal symmetry yields a Cherntopological insulator exhibiting
non-reciprocal phononic propagation at the edge thatis robust against
spatial disorder”**" (Fig. 5a). Breaking spatial-inversion symmetry
while preserving time-reversal symmetry also opens abandgap, lead-
ing to a valley-Hall insulator®®, There, the edge modes between two
mirrored lattices are only robust when a pseudo-spin associated to the
two valleysis conserved. Thisemergent pseudo-spin canbe harnessed
to endow phononic waves with effective fermionic properties. This
idea has been extensively investigated in phononics across multi-
ple platforms such as lattices of pillars with different radii**®, which
allow for pseudo-spins based on C,, symmetry and dipolar and quad-
rupolar modes, whose conservation enables wave sorting (Fig. 5b).
Asimilar symmetry-based strategy hasbeen proposed to self-assemble
topological phononic metamaterials’.

Duality for phonons
The general definition of a symmetry, a transformation that leaves a
systeminvariant, leaves room for other kinds of symmetries beyond the

onesalready discussed, which canbe less straightforward, or somewhat
hidden. As an example, two different configurations of a mass-spring
chain (Fig. 5¢) can share anidentical band structure at the scale of the
Brillouin zone, despite the absence of any conventional symmetrical
relation between them. These ‘hidden symmetries’ may look accidental
atfirst glance. To understand their nature, it is convenient to consider
a family of systems continuously depending on a parameter p. For-
mally, to define a symmetry, the structure of the system needs to be
encodedintoamathematical object suchasthe operator Lintroduced
inthe section on going beyond continuum theories, aHamiltonian, or
a dynamical matrix. Transformations are encoded into operators U,
which are symmetries of L provided that ULU = L. In this case, it is
implicit that parameters are the same in L = L(p) on both sides of the
equation. Dualities can be seen as symmetries that also change the
parameter p associated with the system: given afunction p — u(p), we
say that Uis a duality when UL(p)U ™ = L(u(p)). At fixed points p* of u
such that u(p*) = p*, known as self-dual points, the duality reduces to
aconventional symmetry operation. The Onsager-Casimir reciprocal
relations™ relating the properties of systems with opposite external
biases (such as magnetic fields) are an example of such a duality. The
mechanical structure known as a twisted kagome lattice**® provides an
example with a more complex duality operator (Fig. 5d). In this case,
the parameter p = @is the twist angle, and His the dynamical matrix of
the phonons. The duality operator Ushuffles the vibrational degrees
of freedominthe unitcell, and u(p) = —p. Because of the duality within
the family of twisted lattices, the band structures of dual systems are
identical.

Other examples of mechanical systems dualities can be found
elsewhere®® ", including a systematic way to construct them*®. Inaddi-
tion, the abstract Maxwell duality between floppy modes and states of
self-stress*?~*” can also translate into a physical duality between paral-
lelogramttilings and fibre networks*2 Beyond the iso-spectrality of dual
media, duality operations put additional constraints on the self-dual
configuration, similarly to conventional symmetries. More generally,
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wave dualities have consequences for macroscopic elastic properties*,
and affect the propagation of waves at interfaces®”® as well as topological
edgeand cornerstates”” >, They also lead to pseudo-spin degeneracies
unusual in mechanics that can be exploited to perform information
processing using non-Abelian geometric phases®®,

Using families of symmetries to control phononic

band structures

The crystallographic approach based on spatial symmetries is a power-
ful tool to engineer phononic crystals, but as the number of possible
combinations of symmetries (space groups) is limited, this approach
is not sufficient to finely control the shape of the bands. One way to
circumvent this limitation is to use a parameter-dependent material
to interpolate between different combinations of symmetries®***%.,
In particular, non-local metamaterials use couplings going beyond
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nearest-neighboursto control the propagation of waves
sider amonoperiodic chain of meta-atoms with families of couplings
corresponding to different spatial ranges®° (Fig. 5e). The systems with
only blue couplings or only red couplings correspond to different
discrete translation symmetries. While the periodicity of the system
remains constant, the band curvature strongly depends on the ratio
ofthe coupling strengths. This behaviour can also be seen as the result
oftheinteraction of several chains of meta-atoms with different perio-
dicities, which allows for multiple mode scales at a fixed frequency
in the first Brillouin zone. In particular, the selective promotion of
the third-order inter-cell couplings generates a dispersion relation
with alocal minimum that mimics the physics of rotons in superfluids.
This roton-like dispersion has been experimentally implemented in
3D phononic metamaterials***%7% and enables the propagation of
multiple travelling waves with different wavenumbers and opposite
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Fig. 5| Generalized symmetries within families of phononic media.

a, Flow-induced time-reversal symmetry breaking in an hexagonal acoustic lattice
lifts the Dirac cone degeneracy and opens a topological bandgap described by a
Cherninvariant when the air velocity v, in the lattice is non-zero. Such a phononic
Cherninsulator exhibits topologically protected non-reciprocal wave propagation
atisboundaries. b, The preservation of C, spatial symmetry within triangular
lattices of pillars, as well as the symmetrical band inversion induced by changing
theradius of the pillars (left), results in helicoidal topological boundary states
whose symmetry-engineered pseudo-spin (red indicates spin +and blue spin -)
allows for wave sorting at topological crossings (right). The image on the leftis a
picture of the system, the one on the right is a simulation of the acoustic pressure
field distribution. ¢, Three different configurations of a mass-spring chain show
the emergence of a hidden symmetry, or duality, that results in two different
lattices having the same band structure (left and right). At the self-dual point
(centre), the duality becomes a symmetry of the medium and leads toa double
degeneracy of the band for the entire Brillouin zone. d, In the plane, a twisted
kagome lattice hosts a duality transformation U that rotates the displacements
ofthe three masses (red, blue and yellow arrows in the schematic at the top) and
translates them to different unit cells. This transformation is acombination

of spatial and non-spatial transformations that goes beyond space group or
internal symmetries. This non-trivial duality relates different twisted kagome
lattices configurations (top left and right lattices), which can be implemented

using Lego bricks (bottom picture) e, Changesin the dispersion relation for alD
chain of masses and springs as a function of the ratio between first-order (K}) and
third-order couplings (K3). For aratio equal to 1, the dispersion is analogous to
that ofaroton. f, Zero-energy deformation mode within a non-locally resonant
phononic metamaterial, which yields anomalous conesin the band structure
emerging from zero frequency at the point K of the Brillouin zone, in contrast
with the typical case of cones starting at the I' point. g, A twist angle between

two phononic crystal layers (left) induces negative refraction of acoustic waves
(top right), described by a shift of the isofrequency contour in reciprocal space,
which can be modelled by a spatially dependent gauge field A (bottom right).

h, Atwist angle between two detuned anisotropic elastic metasurfaces yields a
hyperbolic effective material tensor T with non-Hermitian off-diagonal terms S
(left). This leads to a frequency-dependent hyperbolic contour orientation of the
bilayer (top right). This axial dispersion comes with an asymmetric distribution
oflosses, which results in shear hyperbolic wavefronts of the out-of-plane
displacement u_z stemming from a point-source excitation, as shown in both
reciprocal (Fourier transform (FT)) and real space (bottom right). Panel a adapted
fromref. 214, CC BY 4.0. Panel b adapted fromref. 366, Springer Nature Limited.
Panel c adapted fromref. 369, CC BY 4.0. Panel d adapted fromref. 368, Springer
Nature Limited. Panel e adapted from ref. 380, CC BY 4.0. Panel fadapted with
permission from ref. 381, American Physical Society. Panel g adapted with
permission fromref. 399, AAAS. Panel h adapted fromref. 403, CC BY 4.0.

directions at the same frequency in a homogeneous material, as well
as zero group velocity modes at the two inflection points. A similar
strategy has been used to design delocalized zero-energy modes with
afrequency w = 0 atatunable wavevector q # 0 by inducing non-trivial
rigid motions within the medium using graph theoretical tools**. The
hybridization of these modes with the waves propagating in the lat-
tice generates anomalous cones in the dispersion relation emerging
from arbitrary locations in the Brillouin zone (Fig. 5f) and leading to
broadband negative refraction.

Twistronics for phonons
Inmultilayer systems, it is possible to combine the spatial symmetries
associated with each layer, for instance by exploiting interlayer rota-
tions. Recent works have started transposing the idea of twistronics®*°
from electronic systems to phononics as an additional knob for wave
control*”’. For example, the interplay between the spatial symmetries
of the layers can generate superlattices controlled by the twist angle.
Theresulting moiré patterns, which have long-range periodicity at spe-
cific twist angles, are responsible for flat bands in the dispersion rela-
tion, which are tightly linked to field localization and strong resonant
behaviour®**, Moiré patterns can also emerge within a monolayer
platformmade of resonators whose positions are fixed but whose reso-
nant properties are spatially modulated and rotated to introduce a
structural mismatch with the underlying resonant lattice. Such twisted
spatial modulations of a unique layer yield tunable wave behaviour,
as demonstrated in hyperbolic phononic metasurfaces'’. Beyond
strictly periodic moiré patterns, twist-driven topological effects*”*%
and tunable gauge fields for negative refraction®” relying on structural
features (Fig. 5g) have been demonstrated over large angular ranges.
Beyond twist-induced lattice effects, interlayer rotations are rel-
evant for anisotropic media, as showcased by twisted hyperbolic meta-
surfaces, where monolayers with hyperbolic dispersion are coupled
and rotated with respect to each other*°*°%, By controlling the twist
angle, thebilayer undergoes a topological transitionbetween open and
closed frequency contours for a broad range of frequencies, enabling
broadband tunability of the directionality and localization of the wave

propagation. In particular, the transition angle corresponds to a canali-
zation regime with enhanced wave-matter interaction. Twist effects can
alsobe usedtorotate or shear dispersionrelations inso-called twisted
shear hyperbolic metasurfaces*®. The corresponding orthogonality
breakingbetween two detuned directional resonances makesit possible
to control both the Hermitian and non-Hermitian features of the wave
propagation. For afixed twist angle, the principal axis of the hyperbolic
medium rotates with frequency, and the spatial distribution of loss
does not match the contour’s symmetry. At the operating frequency,
this translates into an effective material tensor T, whose Hermitian part
is diagonal while its non-Hermitian part presents some off-diagonal
terms (Fig. 5h). Using the twist between two detuned hyperbolic meta-
surfaces, this effect can be maximized, and directly resultsinascrewed
hyperbolicfield profile where some branches are overdamped and oth-
ersenhanced in comparison toaconventional hyperbolic medium. The
combination of additional rotation-symmetry breakings within multi-
layer phononic mediayields even more advanced wave manipulation**,
such as all-angle directional canalization of sound*®.

Outlook

Asshowcased throughout this Review, asymmetry-driven approachisa
successful paradigm for the advanced manipulation of phononicfields
across a wide range of domains and scales. In systems where energy
conservation is broken, a frontier consists in engineering active and
time-dependent media with feedback, in which wave propagation can
be controlled at willthrough feedback loops. The future development of
multiphysics concepts such as electromomentum or magnetomomen-
tumcouplings has great potential to push the levels of reconfigurability
of phononic mediabeyond whatis currently possible. In particular, the
ability toimplement extremely fast modulations of the global proper-
ties of the medium over a large scale would allow the investigation of
out-of-equilibrium physical phenomena*’® and the use of time as an
extra tuning parameter in the context of 4D metamaterials*”’. Recon-
figurable acoustic metasurfaces paired with optimization protocols
have also proven to be a crucial tool for wavefield shaping, allow-
ing advanced multiplexing of acoustic communication in complex
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environments*%, Alternatively, the use of active matter">*% or flex-

ible soft elastomers®°°2 to modify the properties of the propagat-
ing medium opens the door to complex dynamic wave phenomena
with analogies with the behaviour of active solids ranging from bio-
logical tissues to soft robotic materials"**°°3¢%49°~413 Focusing on the
zero-frequency response of the medium®**, active components open
avenues for autonomous metamaterial-based machines relevant for
sensing, shape-morphing and object manipulation. Conversely, the use
of activity often requires taking into account instabilities and nonlin-
earities, which canbe used to create new functionalities. In this context,
new ideas and implementations linked to non-Abelian, non-Hermitian
and nonlinear topological phenomena, as well as topological defects
and disordered topological phases, have emerged as ameans to control
acoustic and optical fields***". These directions hold promise for
next-generation computation and telecommunications applications
built on topologically robust devices.

The symmetry-driven approach described in this Review goes
beyond artificial media and also applies to natural materials. In the
near-infrared optical frequencies, the vibrations of atomic lattices
(phonons) can interact with light to create quasiparticles called
phonon-polaritons, whose symmetry-related properties, such as
hyperbolicity, are currently under extensive study*®. Controlling the
propagation of these hybrid surface waves, either via twisted multilayer
systems or artificial patterning, is at the heart of modern nanophoton-
ics, and futureinvestigations combining both spatial and time symme-
tries, such as Floquet polaritonics, are promising research directions.
Beyond phonon-polaritons, it has been recently demonstrated that
phonons in natural alpha-quartz show intrinsic chirality*’. Phonons
arealsorelated to heat transport**, and the symmetry-based approach
also applies to this diffusive regime, as showcased by thermal systems
withanti-parity-time symmetry>*® and twisted thermal metasurfaces*”.

Going beyond standard symmetries, the examples of general-
ized symmetries we discussed, such as twist symmetries or dualities,
show that the symmetry-based approach discussed in this Review
is open-ended, as new kinds of symmetries can emerge. Finally,
symmetry-based approaches can complement the inverse design
methods and machine-learning techniques that have been developed
inthe past decade to design artificial metastructures*”*”, for instance

in equivariant machine-learning techniques**.

Published online: 15 December 2025
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